
Contextualize Your Listening:
The Playlist as Recommendation

Engine

Benjamin Fields

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

of the
University of London.

Department of Computing
Goldsmiths, University of London

2011

I certify that this thesis, and the research to which it refers, are the product
of my own work, and that any ideas or quotations from the work of other people,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices of the discipline. I acknowledge the helpful guidance and
support of my supervisors, Dr. Christophe Rhodes, Prof. Mark d’Inverno and
Prof. Michael Casey.

Abstract

It is not hyperbole to note that a revolution has occurred in the way that
we as a society distribute data and information. This revolution has come
about through the confluence of Web-related technologies and the approaching-
universal adoption of internet connectivity. Add to this mix the normalised use
of lossy compression in digital music and the increase in digital music download
and streaming services; the result is an environment where nearly anyone can
listen to nearly any piece of music nearly anywhere. This is in many respects
the pinnacle in music access and availability. Yet, a listener is now faced with a
dilemma of choice. Without being familiar with the ever-expanding millions of
songs available, how does a listener know what to listen to? If a near-complete
collection of recorded music is available what does one listen to next? While the
world of music distribution underwent a revolution, the ubiquitous access and
availability it created brought new problems in recommendation and discovery.

In this thesis, a solution to these problems of recommendation and discov-
ery is presented. We begin with an introduction to the core concepts around
the playlist (i.e. sequential ordering of musical works). Next, we examine the
history of the playlist as a recommendation technique, starting from before the
invention of audio recording and moving through to modern automatic meth-
ods. This leads to an awareness that the creation of suitable playlists requires
a high degree of knowledge of the relation between songs in a collection (e.g.
song similarity). To better inform our base of knowledge of the relationships
between songs we explore the use of social network analysis in combination with
content-based music information retrieval. In an effort to show the promise of
this more complex relational space, a fully automatic interactive radio system
is proposed, using audio-content and social network data as a backbone. The
implementation of the system is detailed. The creation of this system presents
another problem in the area of evaluation. To that end, a novel distance metric
between playlists is specified and tested. We then conclude with a discussion
of what has been shown and what future work remains.

Acknowledgements

I would like to thank my supervisors, Christophe Rhodes, Mark d’Inverno, and
Michael Casey. Each of you have provided an invaluable piece of the support
structure that enabled the work described in this thesis (and the writing itself).
Thanks to everyone who assisted in the editing of this document, especially
Dan Stowell for early feedback, David Lewis for copyediting, and for the helpful
critique from my examiners Anssi Klapuri and Stefan Rüger. While this thesis
is much improved with their review, any remaining errors are my own.

Thanks to Tim Crawford for giving my technical work musical context.
Thank you to everyone in the Intelligent Sound and Music Systems at Gold-
smiths University of London. In no particular order: Mike, Alex, Geraint,
Jamie, Bruno, Mick, Richard, Daniel, Ray, Daniel, Polina, Daniel, Hamish,
Ollie, Marcus, and Alastair. Thanks to Kurt Jacobson for all your efforts on
Myspace and communities. Thank you to Yves Raimond for introducing me to
Linked Data and Hackdays. Thanks as well to the many people at the Centre
for Digital Music, Queen Mary, University of London that I have had the great
pleasure of working with these last few years, through multi-institution grants
or other contexts: Matthew, Matthias, Amélie, Andrew, Chris, Mark, Chris,
Mark, Adam, Mark, Katy, and Sefki. Thanks to Claudio Baccigalupo for many
thoughts on structured data from the Web. Thank you to Paul Lamere for
your tireless work in all things music informatics, especially your collaboration
on our tutorial. This work would not have been possible without the support
of: the Engineering and Physical Sciences Research Council through the On-
line Music Recognition and Search 2 grant (EP/E02274X/1); the Goldsmiths
Department of Computing overseas research fund; a grant from the Audio En-
gineer Society Educational Foundation; and the Andrew W. Mellon Foundation
supported Networked Environment for Music Analysis project.

Finally thanks to my family. To my parents, for imparting the intellectual
curiosity required and unconditional love and support (and editing!). To Becky,
for tolerating my odd work hours, and listening to my ideas. Consider the favour
returned.

Contents

Abstract 3

1 Introduction 16

1.1 Definitions . 17

1.2 Aims . 18

1.3 Focus . 19

1.4 Thesis Outline . 20

2 Playlists and Program Direction 22

2.1 The Playlist as Recommender . 23

2.1.1 Categorising Playlists by Producer and Consumer 23

2.2 A History of Playlist Generation 25

2.2.1 Before Recorded Music 25

2.2.2 Early Radio . 26

2.2.3 Post-War Radio . 26

2.2.4 The Emergence of the Club DJ 27

2.2.5 The Playlist Goes Personal 27

2.2.6 Now With Internet . 27

2.3 Music Similarity . 28

2.3.1 MIREX: Audio Music Similarity and Retrieval 31

2.3.2 Descriptions of Participating Algorithms 31

2.3.3 Evaluation and 2010 Results 34

2.4 Recommender Systems in Music 36

2.5 Finding a Good Playlist . 37

2.5.1 Coherence and Order . 38

2.5.2 The Serendipitous Lack of Order 41

2.5.3 Summary . 41

2.6 Formats and Legal Considerations 42

2.7 Deployed Tools and Services . 45

2.7.1 Construct Non-Social . 45

2.7.2 Consume Non-Social . 47

2.7.3 Consume Social . 49

2.7.4 Construct Social . 52

2.7.5 Summary . 53

2.8 Research Systems for Playlist Generation 54

2.8.1 Human-Facilitating Systems 54

2.8.2 Fully-Automatic Systems 55

2.8.3 Evaluation . 62

2.9 Discussion . 68

3 Multimodal Social Network Analysis 70

3.1 Introduction . 70

3.2 Networks and Audio . 72

3.2.1 Existing Tools for Networks 72

3.2.2 Content-Based Music Analysis 74

3.2.3 Measuring Independence Between Distributions 75

3.3 Data Set Acquisition and Analysis 75

3.3.1 Sampling Myspace . 76

3.3.2 Network Analysis of the Myspace Artist Network Sample 78

3.3.3 Community Structure . 79

3.3.4 Summary . 82

3.4 Hybrid Methods of Distance Analysis 82

3.4.1 Geodesic Paths . 84

3.4.2 Maximum Flow . 84

3.4.3 Using Audio in Community Detection 86

3.4.4 Summary . 92

3.5 Discussion . 92

3.6 Engineering Playlist-Based Applications 95

3.6.1 The Max Flow Playlist . 95

3.6.2 Steerable Optimized Self-Organizing Radio 95

4 Steerable Optimizing Self-Organized Radio 99

4.1 Generating Better Playlists . 99

4.1.1 More Specific Queries . 100

4.1.2 Novelty Curves and Expectation 100

4.2 The Web as a Platform . 101

4.3 Interactivity Model . 102

4.3.1 Input via Periodic Request 102

4.3.2 Narrowing Choice . 103

6

4.3.3 Eliciting Feedback . 103

4.4 The System . 104

4.4.1 Overview . 104

4.4.2 User Interface . 104

4.4.3 Core System . 108

4.5 Playlist Analysis and Evaluation 109

4.5.1 Genre Labels . 109

4.5.2 Familiarity . 112

4.6 Discussion . 119

5 A Method to Describe and Compare Playlists 121

5.1 Introduction . 121

5.2 Playlist as Delivery Mechanism 122

5.2.1 Usage in the Wild . 122

5.2.2 Evaluation Methods . 124

5.2.3 Summary . 124

5.3 Topic-Modelled Tag-Clouds . 125

5.3.1 Tags as Representation 125

5.3.2 Reducing the Dimensionality 126

5.4 Playlists as a Sequence of Topic Weights 127

5.4.1 Measuring Distance . 127

5.5 Evaluation . 128

5.5.1 Dataset . 129

5.5.2 Daily Patterns . 130

5.5.3 Inter-station vs. Intra-station 132

5.5.4 Summary . 132

5.6 Discussion . 133

6 Conclusions 137

6.1 Summary . 137

6.2 Contributions . 137

6.3 Limitations and Future Work . 138

6.4 Concluding Remarks . 141

Bibliography 142

A Song Transitions in Computer-Generated Program Direction 158

A.1 Introduction . 158

A.2 Existing Methods . 159

A.2.1 Musical Event Segmentation and Clustering 159

7

A.2.2 Automatic Mixing . 159
A.3 A Better Automated Crossfader 160

A.3.1 Transition Types . 160
A.3.2 Maximized Relevant Overlap 163

A.4 Discussion . 163
A.4.1 Simple Implementation 163
A.4.2 Further Work . 164

8

List of Figures

2.1 MIREX 2010 Audio Music Similarity Scores 36

2.2 Rating a CD on Amazon.com . 37

2.3 The relative weighting of factors in playlist assembly 38

2.4 A playlist within iTunes ordered alphabetically by title 39

2.5 Three common examples of changing tempo curves 41

2.6 High-level concepts to balance in a playlist 42

2.7 Two example similar to seed playlists 43

2.8 An example playlist serialised as XSPF 44

2.9 A rendering of an instance of the Playback Ontology 46

2.10 The distribution of a selection of playlist tools 47

2.11 Smart playlists used per user, an informal survey 48

2.12 The user interface for the mobile application Moodagent 49

2.13 The radio player and social interaction on Last.fm 51

2.14 The process of nearest neighbour unordered playlist creation . . 56

2.15 Example ‘shortest path’ and ‘minimum spanning tree’ solutions . 59

2.16 Finding a path with the start and end songs specified 59

2.17 A generic example of a playlist cohesion measurement 67

3.1 A simple flow network with directed weighted edges 73

3.2 Cumulative degree distributions for Myspace artist sample 79

3.3 Expanding the graph to be song rather than artist centric 83

3.4 Spread of pair-wise artist dissimilarity by geodesic distance . . . 85

3.5 The distribution of EMD by maximum flow value between artists 87

3.6 The distribution of Euclidean distance by maximum flow value . 88

3.7 Deltas for each maximum flow value group of acoustic distances . 89

3.8 The spread of community genre entropies for each partition method 91

4.1 SoSoRadio’s interactivity model for nominees and requests 103

4.2 A system-wide block diagram of SoSoRadio 105

4.3 Initial landing page for radio user page 106

4.4 After the user has rated the current song 106

4.5 Screenshot showing the hover behavior of of the nominees 107
4.6 Radio interface after a vote . 108
4.7 Histogram of genre label counts per playlist 110
4.8 An example demonstrating smoothness calculation 111
4.9 Histogram of average smoothness for SoSoRadio playlists 112
4.10 Histogram of minimum smoothness in each playlist 113
4.11 Histogram of maximum smoothness in each playlist 113
4.12 histogram of mean of each playlist’s pageviews 114
4.13 Histogram of minimum artist pageviews in a playlist 115
4.14 Histogram of max artist pageviews in a playlist 115
4.15 Comparative overlay of pageviews per playlist 116
4.16 A histogram of the squareroot variance of pageviews 116
4.17 A histogram of mean magnitude deltas of pageviews 117
4.18 A histogram of minimum magnitude deltas of pageviews 117
4.19 A histogram of maximum magnitude deltas of pageviews 118
4.20 Comparative overlay of delta pageviews per playlist 118

5.1 The tag cloud for Bohemian Crapsody by Sickboy, from Last.fm. 125
5.2 The graphic model of latent Dirichlet allocation 127
5.3 The complete process for construction of a TCTM feature set . . 128
5.4 The mean start time difference, with squared error of the mean. . 134
5.5 The time of day difference from a query playlist 135
5.6 Precision versus Recall for six stations hourly playlists 136

6.1 A playlist created by the Roomba Recon system 140

A.1 Four base crossfader curves, labeled by transition type 160
A.2 A visualisation of running bar alignment 162

10

List of Tables

2.1 Classifying various kinds of playlists 24
2.2 2010 MIREX Audio Music Similarity and Retrieval participants . 32
2.3 MIREX 2010 Audio Music Similarity Fine Scores 35
2.4 The runtime for each algorithm in the AMS MIREX task 35
2.5 Shuffle and sequential ordering as a preferred listening methods . 42
2.6 Relevance of playlists generated via graph trajectories and k-NN 57
2.7 Metadata fields and example valued from Platt et al. [2002] . . . 57
2.8 The aggregated genre labels of test playlists 61
2.9 Subjective evaluation from Flexer et al. [2008] 61
2.10 Aggregate ratings from Lamere’s playlist survey 64
2.11 Confusion matrix of actual and listeners’ assumed generator sources 64
2.12 Basic statistics for the playlist used for objective evaluation . . . 65
2.13 Artist tag diversity of playlists retrieved from various sources . . 66
2.14 Weights assigned to the various artist-to-artist relationships . . . 67
2.15 Playlist cohesion from the artist similarity graphs 68

3.1 Network statistics for the Myspace artist network sample 78
3.2 Node pairs of median acoustic distance values 97
3.3 ANOVA test results of EMD against maximum flow 98
3.4 Entropy values for the acoustic distances and maximum flow values 98
3.5 Results of the community detection algorithms 98

4.1 Basic statistics for the evaluation playlists from SoSoRadio . . . 110

5.1 Basic statistics for both the radio log datasets 129
5.2 The five most relevant tags in each topic 131

Publications

B. Fields and M. Casey. Using audio classifiers as a mechanism for content
based song similarity. In International Convention of Audio Engineering
Society, New York, NY, USA, October 2007.

M. Mauch, S. Dixon, C. Harte, M. Casey, and B. Fields. Discovering chord
idioms through Beatles and real book songs. In International Confernce on
Music Information Retrieval (ISMIR), Vienna, Austria, September 2007.

K. Jacobson, B. Fields, M. Sandler and M. Casey. The effects of lossy audio
encoding on genre classification tasks In International Convention of Audio
Engineering Society, Amsterdam, Netherlands, May, 2008.

B. Fields, K. Jacobson, M. Casey, and M. Sandler. Do you sound like your
friends? exploring artist similarity via artist social network relationships
and audio signal processing. In International Computer Music Conference
(ICMC), Belfast, United Kingdom, August 2008.

B. Fields, K. Jacobson, C. Rhodes, and M. Casey. Social playlists and bottle-
neck measurements : Exploiting musician social graphs using content-based
dissimilarity and pairwise maximum flow values. In International Conference
on Music Information Retrieval (ISMIR), Philadelphia, Pennsylvania, USA,
September 2008.

K. Jacobson, B. Fields, and M. Sandler. Using audio analysis and network
structure to identify communities in on-line social networks of artists. In In-
ternational Conference on Music Information Retrieval (ISMIR), Philadel-
phia, Pennsylvania, USA, September 2008.

B. Fields, C. Rhodes, M. d’Inverno. Using song social tags and topic models
to describe and compare playlists. In Workshop on Music Recommendation
and Discovery (WOMRAD), Co-Located with ACM Recommender Systems
(RecSys), Barcelona, Spain, September 2010.

K. Page, B. Fields, B. Nagel, G. O’Neill, D. De Roure and T. Crawford.
Semantics for music analysis through linked data: How country is my coun-
try? In IEEE International Conference on eScience, Brisbane, Australia,
December 2010.

B. Fields, K. Jacobson, C. Rhodes, M. Sandler, M. d’Inverno and M. Casey.
Analysis and Exploitation of Musician Social Networks for Recommendation
and Discovery. (accepted) IEEE Transactions on Multimedia.

B. Fields, C. Rhodes, M. d’Inverno. Automatic Group-Interactive Radio using
Social-Networks of Musicians. In International Conference on Weblogs and
Social Media (ICWSM), Barcelona, Spain, July 2011.

13

Demonstrations and Talks

(invited talk) B. Fields and K. Page. The Semantic Web and Why You Should
Care. Given at Integrating Digital Library Content with Computational Tools
and Services Workshop, Co-Located with ACM and IEEE Joint Conference
on Digital Libraries (JCDL), Austin, Texas, USA, 19 June 2009.

(installation) R. Stewart, M. Magas, and B. Fields. decibel 151: Collaborative
Spatial Audio Interactive Environment. Presented at ACM SIGGRAPH Art
Gallery, New Orleans, Louisiana, August 2009.

(tutorial) C. Baccigalupo and B. Fields. Mining the social web for music-
related data. Given at International Conference on Music Information Re-
trieval (ISMIR), Kobe, Japan, 26 October 2009.

(demonstration) B. Fields and C. Rhodes. An Audience Steerable Auto-
matic Music Director for Online Radio Broadcast. Presented at International
Conference on Music Information Retrieval (ISMIR), Kobe, Japan, October
2009.

(presentation) B. Fields, K. Jacobson, C. Rhodes, M. Sandler and M. Casey.
Analysis and Exploitation of Musician Social Networks for Recommendation
and Discovery. Given at IEEE THEMES, co-located with IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas,
Texas, March 2010.

(tutorial) B. Fields and P. Lamere. Finding a Path Through the Juke Box: The
Playlist Tutorial. Given at International Conference on Music Information
Retrieval (ISMIR), Utrecht, The Netherlands, 9 August 2010.

(demonstration) K. Page, B. Fields, B. Nagel, G. O’Neill, D. De Roure and
T. Crawford. Semantics for Signal and Result Collections through Linked
Data: How Country is my Country? Presented at International Conference
on Music Information Retrieval (ISMIR), Utrecht, The Netherlands, August
2010.

(demonstration) K. Page, B. Fields, B. Nagel, G. O’Neill, D. De Roure and
T. Crawford. Semantics for music researchers: How country is my coun-
try?. Presented at International Conference on the Semantic Web, Shanghai,
China, November 2010.

15

Chapter 1

Introduction

“Over the piano was printed a notice: Please do not shoot the pi-
anist. He is doing his best.”
–Oscar Wilde, Personal Impressions of America, 1883

The way we as a society listen to and consume music has changed radically in
the last century and is still very much in flux. 150 years ago, if you wanted to
listen to a piece of music, it needed to be performed where you could physically
hear it. This performance could be formal, informal or even mechanised (e.g.
the player piano).

Recorded music then completely changed how we listen to music. Record-
ings separate the listener from the performer; this separation creates many new
ways of consuming music. For much of the 20th century if you liked a piece of
music, you would go to the store and buy a piece of physical media (a record,
tape or CD) containing the recording of that piece of music, much as you would
buy a frying pan or a carton of milk.

The Web is now completely transforming how we interact with music again.
This is principally happening through a radical change in the distribution of
recorded music. The Internet and the Web on top of it have made the distri-
bution of any sort of information orders of magnitude cheaper than was pre-
viously possible. This reduction of the cost of distribution in recorded music
is contributing heavily to the steady decline in the sales of music [Blow, 2009].
A growing body of data shows1 that people are replacing their music buying
(which has shifted to downloads of digital music) to music streaming, on de-
mand. This is especially true among the young. This represents at least as
big a shift in the way people think about music as occurred with the onset and
widespread commercialisation of recorded music. The digital audio available for

1For example, market data about the US: http://evolver.fm/

2010/11/11/americans-now-stream-as-much-music-as-they-download/

or France: http://www.mediametrie.fr/comportements/communiques/

la-musique-sur-internet-a-trouve-son-public-aupres-des-jeunes.php?id=353

http://evolver.fm/2010/11/11/americans-now-stream-as-much-music-as-they-download/
http://evolver.fm/2010/11/11/americans-now-stream-as-much-music-as-they-download/
http://www.mediametrie.fr/comportements/communiques/la-musique-sur-internet-a-trouve-son-public-aupres-des-jeunes.php?id=353
http://www.mediametrie.fr/comportements/communiques/la-musique-sur-internet-a-trouve-son-public-aupres-des-jeunes.php?id=353

immediate download in the “record store”, e.g. Apple’s iTunes or Amazon.com,
represents more variety and coverage than the largest physical records store that
predate them and these inventories are available anywhere where there is an
internet connection, rather than just population centers. Newer streaming-on-
demand services such as Spotify2 or Play.me3 push this further, completely
removing the idea of purchasing music and making their large catalogue one
and the same as a subscriber’s personal collection of music.

It is this rapidly-changing music environment that forms the backdrop of
this thesis. Here we find both new problems and opportunities. When you can
listen to any of millions of songs at any moment, how can you find the right
music for the moment? How can you most effectively discover new music you
will enjoy? These questions used to be constrained; given the music available
to me, what should I listen to or what is new that I would like? The new reality
of on-demand streaming and, to a lesser extent, digital downloads has removed
this constraint. However, in its place we have a web of information, about the
artists producing this music and their fans.

Taken together this requires better tools for music recommendation and
discovery; it also makes new data sources available to enable the development
of these tools. It is in this context that we present this thesis. The objective of
this thesis is to make a clear contribution to the complimentary disciplines of
information retrieval and recommender systems in the domain of music.

1.1 Definitions

This thesis covers work which is interdisciplinary, and, while narrow in focus,
the scope of relevant background material is wide. In order to discuss ideas
from multiple disciplines and fields at once and do so coherently, it is necessary
to define a few terms.

A recommender system is a technique or method that presents a user
with suggested objects for consumption based on past behaviour. For the pur-
pose of this thesis we take a recommender system to encompass the suggestion
of an object for any applicable domain-specific interaction with that object. In
the case of music, we would describe a system that suggests songs for a user
to listen to, based on data about the listener, the songs or both, as a music
recommender system.

Information retrieval is the interdisciplinary field of searching for doc-
uments that are deemed relevant from among a collection. The collection can
take many forms, including a relational database, a digital library repository

2http://spotify.com
3http://play.me

17

http://spotify.com
http://play.me

or the web. When considering music information retrieval, the document is
typically a piece of music (or a segment of a piece) from a collection, where
relevance is determined based on the particular use case of a system (e.g. when
searching for remixes by example, a system uses a statistical analysis of digital
audio signal looking for a high threshold of similar content).

In lay terms, playlist is incredibly overloaded, covering everything from an
unordered set of songs (the classic definition in radio) to a file on disk serialising
a specific ordered list of songs stored locally (for example, serialised XSPF4) to
everything in between. In this thesis, playlist is taken to encompass all of these
meanings (and a bit more).

We explicitly define a playlist as any group of songs, typically ordered,
that are meant to be listened to or otherwise consumed together. This definition
covers some things that are not commonly considered as playlists. This includes
live performances of groups of songs such as the set of songs a band plays at
a particular concert or a programme performed by a symphony orchestra. It
also includes cases from recorded works such as a commercially released album.
This may cover both conceptual models of a group of songs or instance and
serialisations of groups of songs.

Throughout this work fitness is used to describe the suitability of a playlist
to a given situation (as defined through explicit user input (e.g. seed song) plus
context such as environment or user profile). That is, fitness is a measure of
how well a given playlist matches (or fits) some request, the combination of
explicit user input and implicit context.

1.2 Aims

The work described in this thesis is driven by three specific aims:

Extend automatic similarity methods to encode information

from the web

The amount of openly accessible data related to music is vast in both size
and reach. Though ostensibly describing music itself, these data principally
describe the producers and consumers of music, artists and fans. This can be
described as a relational web and its members compared using techniques from
the mature field of graph theory. In parallel to this, there are many ways to
find the similarity of the described content of music: via textual metadata,
comparisons are made of artist name, genre label, title of work, and album
name among other descriptors; via a statistical description of the content of
audio signal representation of a musical work such as timbre or pitch. In this

4http://xspf.org/

18

http://xspf.org/

work we aim to integrate these two approaches, social and content, to create a
hybrid notion of similarity.

Design a music recommendation system using time and social

contexts, inspired by terrestrial music radio

With the improved encoding of similarity made available by meeting our first
aim, we set out to build an end user music recommendation application that
takes advantage of this information. In particular we take as our use case that
of a request radio show. This use case allows for interaction from listeners to
the system by way of periodic requests for specific songs.

Improve and extend objective measures for playlists

Current literature concerning playlist generation fails to describe robust objec-
tive measures for playlist fitness. In order to improve this, we aim to specify
novel means to compare playlists. In particular, our measure is derived from
existing data through processes that require minimal human intervention. In
this way, we can come closer to human user evaluation results while minimising
the costly use of human test subjects.

1.3 Focus

In order to form a tractable set of problems, in addition to our aims we detail
the focus of this work via the following constraints.

While there are many ways to describe music artists and the songs they
produce, for this work we are concerned with a subset. We constrain this
work to using self-generated textual descriptors (e.g. “hip-hop” or “guitar
driven” as self-labelled) and relational links (e.g. “friends” or “followers”) to
describe artists. Other artists descriptors (e.g. expert generated labels) will
not be directly used, though this work could be extended to consider many of
them. When considering songs this work will limit to two forms of description:
digital audio content-derived features and social tags. Again, there are other
descriptors which may be useful (e.g. symbolic representation) though they are
out of the scope of this work. Taken together these restrictions allow a dataset
to be drawn from one of a number of self-publishing popular music websites
(e.g. Myspace or Soundcloud) without a need for further resources

Additionally, though our similarity work is applicable to many different
playlist generation techniques in many different environments, we focus on gen-
erating playlists between a specified start and end song for radio applications.
Further, we model the song-to-song relationships for the purpose of playlist
generation as a fully connected network rather than, e.g. a multidimensional
metric-space. This is done to prioritise deep rather than wide applicability of

19

the similarity work to playlist generation and an end-user application.

1.4 Thesis Outline

To allow the reader a better understanding of the structure of this document,
the following is an outline of this thesis by summarising the content of the
remaining chapters.

Chapter 2: Playlists and Program Direction. We survey the state of the
art in playlist tools and playlist generation. A framework for types of
playlists is presented. We then give a brief history of playlist creation.
This is followed by a discussion of music similarity, the current state of
the art and how playlist generation depends on music similarity. The re-
mainder of the chapter covers a representative survey of all things playlist.
This includes commercially available tools to make and manage playlists,
research into playlist generation and analysis of playlists from a selection
of available playlist generators. Having reviewed existing tools and gen-
eration methods, we aim to demonstrate that a better understanding of
song-to-song relationships than currently exists is a necessary underpin-
ning for a robust playlist generation system, and this motivates much of
the work in this thesis.

Chapter 3: Multimodal Social Network Analysis. We present an exten-
sive analysis of a sample of a social network of musicians. First we analyse
the network sample using standard complex network techniques to ver-
ify that it has similar properties to other web-derived complex networks.
We then compute content-based pairwise dissimilarity values using the
musical data associated with the network sample, and the relationship
between those content-based distances and distances from network the-
ory are explored. Following this exploration, hybrid graphs and distance
measures are constructed and used to examine the community structure
of the artist network. We close the chapter by presenting the results
of these investigations and consider the recommendation and discovery
applications these hybrid measures improve.

Chapter 4: Steerable Optimizing Self-Organized Radio. Using request
radio shows as a base interactive model, we present the Steerable Opti-
mizing Self-Organized Radio system as a prototypical music recommender
system along side robust automatic playlist generation. This work builds
directly on the hybrid models of similarity described in Chapter 3 through
the creation of a web-based radio system that interacts with current lis-
teners through the selection of periodic requests songs from a pool of

20

nominees. We describe the interactive model behind the request system.
The system itself is then described in detail. We detail the evaluation
process, though note that the inability to rigorously compare playlists
creates some difficulty for a complete study.

Chapter 5: A Method to Describe and Compare Playlists. In this
chapter we survey current means of evaluating playlists. We present
a means of comparing playlists in a reduced dimensional space through
the use of aggregated tag clouds and topic models. To evaluate the fitness
of this measure, we perform prototypical retrieval tasks on playlists taken
from radio station logs gathered from Radio Paradise and Yes.com, using
tags from Last.fm with the result showing better than random perfor-
mance when using the query playlist’s station as ground truth, while
failing to do so when using time of day as ground truth. We then discuss
possible applications for this measurement technique as well as ways it
might be improved.

Chapter 6: Conclusions. We discuss the findings of this thesis in their to-
tality. After summarizing the conclusions we discuss possible future work
and directions implied by these findings.

21

Chapter 2

Playlists and Program Direction

“Now, the making of a good compilation tape is a very subtle art.
Many do’s and don’ts. First of all you’re using someone else’s poetry
to express how you feel. This is a delicate thing.”
– Nick Hornby, High Fidelity, 1995

In this chapter we discuss the playlist, in its many forms and uses, and lay
out the case for the playlist as an ideal construct for music recommendation
and discovery. We consider playlist generation as a delivery-oriented form of
a recommender system. It becomes apparent that the construction of playlists
are intricately tied to an understanding of how member songs relate to each
other when examining the history of playlist generation. Therefore, we include
a discussion of the most well-understood of song-to-song relationships: music
similarity. We discuss notions of similarity that are automatically generated as
this view of similarity currently informs playlist generation techniques. Further,
we discuss what is meant when a playlist is described as ‘good’ or ‘bad’. We
then survey existing techniques, both commercially driven and academic, in the
creation of playlists using music similarity and the bounds of subjective judge-
ment as a foundation. We show that the currently narrow view of automatic
similarity restricts the scope and depths of automatic playlist generation.

The use of context in the form of a playlist as a music recommender is
the driving backdrop behind this research. Section 2.1 begins with an explo-
ration of the playlist as recommender followed by a framework for considering
various forms of real-world playlist use cases; a history of the development of
the modern playlist is found in 2.2. This exposes a strong dependency on the
awareness of pairwise song relationships, leading to a discussion of the underly-
ing techniques in the field of automatic music similarity in Section 2.3. A brief
discussion of how this is currently used to recommend music is presented in
Section 2.4 and aspects of playlist measurement are considered in Section 2.5.
This is followed by an explanation by way of representative examples of com-

mon methods for modelling and serialising playlists in Section 2.6; this sections
also covers how legal structures affect playlists, especially those delivered via
streaming audio over the internet. Using the preceding core of understanding,
a survey is presented of deployed tools in Section 2.7 followed by a survey of
research systems in Section 2.8. Finally, Section 2.9 discusses what this past
research has solved well and where novel approaches are clearly necessary.

2.1 The Playlist as Recommender

Putting together a playlist is solving a particular music recommendation prob-
lem. This is due to the fact that the context of selecting and ordering a set of
songs from a much larger collection is what separates playlist generation from
other music information-retrieval tasks such as query by humming or automatic
transcription. This allows a much wider set of existing literature to be exploited.
While the idea of viewing a recommendation in context is not yet commonplace
in the domain of music, it has been effectively used in generic recommender sys-
tems [Anand and Mobasher, 2007] and in text information retrieval [Dunlop and
Crossan, 2000]. Most commonly, some predictive text systems use the entire
preceding sentence to make more informed guesses about the word being typed
[Cohen and Singer, 1999; Stocky et al., 2004], allowing more efficient use of
larger dictionaries. In many respects the playlist can be viewed as an analog to
a sentence of text. By observing and exploiting what has come previously (or
what is known to come next) a recommendation system can eliminate many
otherwise possible candidates for recommendation. Another relevant technique
from context based recommendation is boosting. A system using boosting takes
a recommendation that is acceptable independent of any context and “boosts”
it to a much stronger recommendation with presented in context with support-
ing recommended objects [Hayes and Cunningham, 2004]. In the music domain,
this is consciously performed by club DJs and radio show presenters [Brewster
and Broughton, 2006]. It may also be present in other forms of human playlist
generation, though this is less documented.

2.1.1 Categorising Playlists by Producer and Consumer

A playlist defines a wide variety of forms of music presentation. It can en-
compass nearly any ordered list of songs. To discuss how playlists function in
different contexts and situations, it is beneficial to categorise playlists based on
common traits. What follows divides various real-world forms of playlists sorted
by the relationship between the entity creating the playlist (the playlist’s pro-
ducer) and the intended entity to listen to the playlist (the playlist’s consumer).
Examples of each category are discussed along with common characteristics of
each class. These categories and their common members are shown in Table 2.1.

23

Expert to Listener Peer to Peer Listener to Self

Club DJ Mixtape Digital Library Playlists
Radio DJ Web Published Playlists Portable Player Playlists
Commercial mix CD

Table 2.1: Various kinds of playlists classified based on the relationship between
producer and consumer.

2.1.1.1 Expert to Listener: The Curator

This category encompasses any and all cases where the playlist is generated by
a professional with the intended playback to occur via some medium which will
allow many people to listen concurrently. Common examples that fit in this
category include various forms of performance by disc jockey (DJ), (e.g. Radio
Specialty Show, Standard Rotation Music Radio Show, Club DJ). In each of
these use cases the basic idea is the same. From some finite set of songs a subset
is selected and ordered based on the particular requirements and goals of the
use case. The key factors that tend to subdivide this category are the total size
of the collection from which songs are drawn and particular kind of feedback
experts receive from their audience.

There is another form within this category that has emerged with the
widespread adoption of personal digital music player (e.g. iPods), the book
of playlists [Ellingham, 2007; Lynskey, 2008]. These are playlists compiled by
experts with content similar to a greatest hits CD or a compilation CD based
on a topical idea. Unlike a compilation album, the experts (e.g. authors) do
not provide the tracks in these playlists; to listen to these playlists the reader
must find the tracks themselves.

2.1.1.2 Peer to Peer: A Contextualised Recommendation Among Friends

The Peer to Peer playlist is inherently social. These use cases encompass de-
vices for peers to recommend not simply music but a context into which the
recommended music is best understood or appreciated. This is encapsulated in
the mixtape, a cassette tape of tracks recorded via playback of various records or
other sources (e.g. radio) creating a personalised compilation. In the internet
age, the same idea is realized over the internet, where a number of websites and
internet-aware applications allow for the broadcasting and sharing of playlists
(e.g. http://mystrands.com, http://webjay.com, iTunes).

2.1.1.3 Listener to Self: Everyone is a DJ

The simplest relationship between producer and consumer of playlists is when
they are the same entity. This is seen most readily with a user of digital

24

http://mystrands.com
http://webjay.com

media management software, such as iTunes or Windows Media Player, creating
playlists within the software. The listener to self use case is less about discovery
of new media and more concerned with exploiting known content to its fullest,
since all songs are from the personal collection of the listener.

2.1.1.4 Functional playlists

Functional playlists encapsulate selection and order of music for playback in
non-listening environments. In other words, a functional playlist is any playlist
that serves as background while some other function is taking place. This can
best be seen commercially in the work of Muzak1. While this is perhaps the
most common way playlists are used in the modern world [Lanza, 2004], it
is outside the scope of this document. Functional playlists are the furthest a
playlist gets from a music recommender system as the goal is for the listener to
do whatever other task they were doing anyway, with the music only subcon-
sciously noticed [Lanza, 2004]. While there are certainly recommender system
strategies that could automate the construction of this sort of playlist, the
use case relies on significant environmental context in place of user taste and
history, separating it completely from the other forms discussed in this section.

2.2 A History of Playlist Generation

Before discussing existing techniques in automatic playlist generation, it is use-
ful to consider the history of manual or human generated playlist generation.
For this we divide recent history based on trends in the construction of playlists
and their driving forces. It should be apparent that these divisions are aligned
with various technological innovations which lead to cultural changes in people’s
conceptions of music and narrative.

2.2.1 Before Recorded Music

In 1850’s London a transition was taking place in the way concert programs
were put together. Prior to this time a concert program was assembled in order
to maximise coverage of taste. The pieces and instrumentation would vary
wildly throughout the concert, with the cultural expectation that the audience
would listen to a subset of interest, attending as much for the social experience
as music itself. Typically these concerts were quite long, with four to six hour
or longer runtimes not uncommon.

It was during the 1850s that concert programs as they are seen in modern
orchestral and symphonic settings began to take form [Weber, 2001]. Concerts
became more focused; pieces were selected to meet an idea or notion that pro-
gram director wished to express with the pieces and their ordering. Here we

1http://www.muzak.com

25

http://www.muzak.com

begin to see the idea of a concert’s program being a curated set of musically
works rather than simply selected to maximise attendance (not that commer-
cial aspects were totally absent). Further innovation both before and during
the time of radio would come to define many of the norms and conventions of
concert programming including the use and mixing of familiar and novel com-
posers in coherent programs [Kremp, 2010]. It is here that we see the birth of
the playlist, though it would be many decades before the term came into use.

2.2.2 Early Radio

The next leap forward toward modern playlist generation was driven by techno-
logical innovation occurring during the late 19th and early 20th century. This
innovation was principally in two parallel areas: wireless communications (e.g.
broadcast radio) and audio recording and playback.

The core transmission and reception technology behind radio was discov-
ered and harnessed in the 1890s, leading to a series of patents, most notably
[Edison, 1891] and [Marconi, 1897]. Just prior to these developments in radio
the core mechanisms for practically recording audio on a medium for playback
were also being perfected; first on cylinders [Edison, 1878] and then on acetate
discs which would eventually become the dominant format.

The emergence of these two technologies, radio and phonographs, laid the
groundwork for music to be broadcast to much larger audiences and without
the physical presence of the performing artists, thus massively increasing what
was possible in curation of ordered sets of music. The first broadcast of a musi-
cal program is commonly attributed to Canadian Reginald Fessenden [Brewster
and Broughton, 2006, p. 2] who, in 1906 broadcast a program featuring a mix
of live musical performance (himself on violin), the playback of a phonograph
record and a reading from the Gospel of Luke. Over the next few years, there
were a few other one-time experimental attempts at musical broadcasting; how-
ever the first continuous broadcast of musical material over radio was started
by Frank Conrad in 1920 [Levinthal, 1998]. These early broadcasts laid the
groundwork for the mass-media playlist broadcasting that would follow.

2.2.3 Post-War Radio

As radio began to settle as a medium certain genres were pushed and emerged,
especially rock and roll and R’n’B [Wall, 2007]. It was during this time that
“playlist” was first used to describe (unordered) sets of songs [Brewster and
Broughton, 2006, p. 20]. Much of the programming became personality-driven
with considerable variation in how music-focussed the personalities were. One
end of the spectrum was represented by hosts such as John Peel, who in many
ways personified the notion of curating a set of songs. The other end of this

26

spectrum of radio hosts were the hosts of “Top 40” and countdown shows the
best known of which is perhaps Casey Kasem. The programming on these
shows was almost exclusively dictated by external constraints (i.e. sales) and
as such the hosts were employed almost exclusively as voice talent.

2.2.4 The Emergence of the Club DJ

In the mid 1970s disc jockeys (DJs) in nightclubs and discos began to use two
turntables with a mixer rather than a single turntable to minimise transition
time between records during playback. This led to the birth of the concept of
continuous mixing or the the elimination of space between songs played back
in sequence. DJs did not want dancers to notice song transitions leading to
techniques such as beat matching, where the tempo of two songs is made equal,
and phrase alignment, where the phrase boundaries in songs are synchronized
in time, were pioneered.

This idea was pushed further with the formation of hip-hop culture, as
DJs became live remixers, turning the turntable into an instrument [Asante,
2008]. At the same time, club DJs started to become the top billing over live
musicians, the curator becoming more of a draw than the artist [Brewster and
Broughton, 2006, pp. 104-120].

2.2.5 The Playlist Goes Personal

Club and hip-hop culture continued to grow, while the emergence of portable
audio devices drove the popularity of cassette tapes. The usage of tapes be-
came wide spread, in turn leading to reordering and combining of disparate
music material into mixtapes [Bull, 2006]. Mixtapes themselves were traded
and distributed socially, providing a means for recommendation and discov-
ery. They were also drivers of social interaction and larger culture, including
fictional works such as Hornby [1995].

In hip-hop, the term mixtape described the recordings of DJs, featuring
novel mixes and leading to current phenomenon of the mixtape, mixset and
mix CD (now most commonly on CD or other digital media). It was through the
sale and distribution of these mixes that DJs could make a name for themselves,
using this medium to demonstrate their abilities.

2.2.6 Now With Internet

The creation and massive increase in uptake of the Web along with psycho-
acoustic audio compression (most notably the MPEG-1 and MPEG-2, layer 3
(MP3) standards [ISO/IEC 11172-3, 1993; ISO/IEC 13818-3, 1998]) allowed
for practical sharing of music over the Internet. This brought the culture of
mixtapes for physical sharing to the non-place of the internet [Freire, 2008]. By

27

removing the requirement for physical exchange, specialist mixtapes as playlists
are now sustainable.

In addition to the peer to peer exchange of music and playlists, streaming-
over-internet radio has emerged with the support of the same technologies.
These internet-based radio stations are somewhat similar in format to tradi-
tional terrestrial radio. However, there are two significant changes affecting
programming of these streamed radio stations. The internet allows a station to
“broadcast” to anywhere in the world, massively increasing the potential pool
of listeners for a station. At the same time, the barrier for entry (e.g. the
cost to start broadcasting a stream) is significantly reduced. Together these
two factors have the result of creating more stations that broadcast more spe-
cialised content, though these effects are somewhat mitigated through copyright
licensing and statutes which are discussed in Section 2.7.3.

Finally, there has been a recent trend toward common web-based storage
(colloquially on the cloud) of playlists. Some of these services provide listenable
content or links to buy content. A few popular examples include Spotify2,
Play.me3 and Mog4.

2.3 Music Similarity

Central to the emergent modern understanding of a playlist is a notion of struc-
ture, from a minimal internal coherence to a complex narrative. Understanding
the structures of playlists for generation and construction depends on under-
standing the music similarity, or the way and amount by which music objects
are similar, amongst the songs making up a giving playlist and those in the
collection from which the playlist is drawn. It is therefore crucial to have a core
of knowledge about music similarity.

Current understandings of the similarity between objects is heavily in-
formed by Tversky [1977]. In this work, objects are considered as sets of
features and an object’s similarity with another is found by comparing the
features which are the same (or in some case close) in value. For example, if
there are two toy balls A and B, and ball A can be considered as the set of
features (small, red, rigid) and ball B can be considered as the set of features
(small, blue, rigid); balls A and B are then taken as similar via the features of
size (both small) and hardness (both rigid), while they differ in their respective
colours (A being red, while B is blue).

When people consider the similarity of music objects, applying the same

2http://www.spotify.com
3http://www.playme.com/
4http://mog.com/

28

http://www.spotify.com
http://www.playme.com/
http://mog.com/

approach is straightforward. Two pieces of music may be close in tempo and
rhythmic structure, but have different instrumentation; this would make them
similar by two features in a set of three. Music, being made up of both acoustic
signal and the brain’s interpretation of that signal, can have features drawn
directly from the signal content or from other factors that impact musical ob-
ject interpretation by the brain [Hargreaves and North, 1999; Krumhansl, 1995].
Many methods have been explored for content-based music analysis, attempting
to characterise a digital audio signal of music by its timbre, harmony, rhythm,
or structure. One of the most widely-used methods is the application of Mel-
frequency cepstral coefficients (MFCC) to the modelling of timbre [Logan, 2000].
In combination with various statistical techniques, MFCCs have been success-
fully applied to music similarity and genre classification tasks [Berenzweig et al.,
2004; Logan and Salomon, 2001; Pampalk, 2006]. Typically a digital audio file
is split into frames with lengths on the order of 100ms. A set of MFCCs can
then be generated for each frame of audio in the following way [Logan, 2000]:

1. Apply a window to filter frame edge error. Then take the Fourier trans-
form of the signal.

2. Transpose the magnitude powers of the resulting spectrum onto the mel
scale. The mel scale, which approximates human listening precision, is
defined as [O’Shaughnessy, 1987]

m = 2595 log10

(
f

700
+ 1
)

(2.1)

where m is the result pitch in mels and f is the input frequency in Hertz.
The mel scale results in pitches that are approximately linear with respect
to frequency until 700 Hz and thereafter the relationship is approximately
logarithmic. Typically this scaling is performed using triangular overlap-
ping windows.

3. In each of the resulting mel frequency bins, take the log power.

4. Treat the list of mel scaled log powers as signal and take a discrete cosine
transform (DCT). The DCT is defined as

Xk =
N−1∑
n=0

xn cos
[
π

N

(
n+

1
2

)
k

]
k = 0, · · · , N − 1 (2.2)

where N is the number of bins used in the mel scale transposition of
step 2.

29

5. The amplitudes of the resulting spectrum are MFCCs

In addition to MFCC, a number of other features are used in some auto-
matic similarity algorithms, for simple measures such as zero-crossing counts
to low-level frame-based features similar to MFCCs in complexity such as chro-
magrams. An exhaustive survey of these features is beyond the scope of our
discussion. An excellent exhaustive treatment of the historical use of features
for music similarity can be found in Pampalk [2006].

A common approach for computing timbre-based similarity between two
songs or collections of songs creates a statistical model describing the MFCCs
for an entire song and comparing these models using a statistical distance mea-
sure. The simplest of these models is a single mean and variance for each
coefficient of the MFCC vector across a piece of digital audio. A more complex
generalisation of this technique is a Gaussian Mixture Model (GMM) where
multiple Gaussians distributions are weighted and combined to describe arbi-
trary distributions. A common way to calculate distance between the resulting
statistical models is via the Kullback-Leibler divergence (KL divergence). For
two discrete random variables P and Q it is defined as [Kullback and Leibler,
1951]:

DKL(P ||Q) =
∑
i

P (i) log
P (i)
Q(i)

(2.3)

The KL divergence is also frequently used in a symmetric form

DsymKL(P ||Q) = DKL(P ||Q) +DKL(Q||P) (2.4)

though this simple symmetric form fails when either P or Q is zero and the
other is not; more robust symmetric forms exist, most notably Jensen-Shannon
Divergence [Lin, 1991].

Another measure of similarity is the Earth Mover’s Distance (EMD), a
technique first used in computer vision [Rubner et al., 2000]. It has been success-
fully used for music timbral similarity [Aucouturier and Pachet, 2004; Pampalk,
2006]. The EMD algorithm finds the minimum work required to transform one
distribution into another: one distribution is taken as mounds of earth, while
the other is taken as holes, work here refers to the movement of this earth into
these holes. A number of other methods for finding the similarity between dis-
tributions are known and used for musical objects, most notably Markov Chain
Monte Carlo (MCMC) [Andrieu et al., 2003].

In order to compare various automatic similarity methods, a task entitled

30

‘Audio Music Similarity and Retrieval’5 has been run for a number of years
as part of The Music Information Retrieval Evaluation eXchange (MIREX)
[Downie, 2006, 2008]. The remainder of this section will provide a formal de-
scription of the task, explanations of each participating algorithm, evaluation
process and the 2010 results, as these methods represent the current state of
the art in content-based similarity.

2.3.1 MIREX: Audio Music Similarity and Retrieval

Currently the Audio Music Similarity and Retrieval (AMS) task within MIREX
has run four times: 2006, 2007, 2009 and 2010. While the task has not changed
in any substantial way during that time, the task description and discussion of
results that follows applies to the 2010 iteration of the task unless otherwise
stated.

The remit for the task is quite simple: given a collection of 7,000 30-second
clips of audio drawn equally from 10 genres, for each selected query track, find
the 100 most similar tracks in the correct order and assigned the correct sim-
ilarity score. No labels (e.g. metadata such as artist name or track title) are
provided. Here correct refers to alignment with human listeners serving as eval-
uators, though a second evaluation using objective statistics is also employed.
Both of these evaluation techniques will be explained in detail in Section 2.3.3.

2.3.2 Descriptions of Participating Algorithms

The 2010 AMS task compared eight algorithms from 14 contributors, including
one that assigned a random score as a similarity, intended to serve as a control.
These algorithms are named and their authors listed in Table 2.2.

2.3.2.1 MTG-AMS

Bogdanov et al. [2010] extract more than 60 descriptors from content includ-
ing MFCCs, various song-wide and per-frame measures described by Bogdanov
et al. [2009]. From this set of content descriptors, four distance measures are
used: a Euclidean distance measure following the reduction of the dimension-
ality of the features using principal component analysis (PCA) as described
in Cano et al. [2005]; KL divergence calculated on a Gaussian summary of
frame-by-frame MFCCs similar to the algorithm detailed in the previous por-
tion of this section; a tempo based distance, described in detail by Bogdanov
et al. [2009]; and a semantic classifier based distance metric also described
by Bogdanov et al. [2009]. These four distances were then joined using a lin-
ear combination with the coefficients selected a priori based on subjective user
feedback, though at the time of writing the details of this user study and its

5past and current years’ task descriptions, participant lists and results are available: http:
//www.music-ir.org/mirex/wiki/Audio_Music_Similarity_and_Retrieval

31

http://www.music-ir.org/mirex/wiki/Audio_Music_Similarity_and_Retrieval
http://www.music-ir.org/mirex/wiki/Audio_Music_Similarity_and_Retrieval

Algorithm name Abbreviation Contributors

MTG-AMS BWL1 Dmitry Bogdanov, Joan Serrà,
Nicolas Wack and Perfecto Herrera

PS09 PS1 Tim Pohle and Dominik Schnitzer
PSS10 PSS1 Tim Pohle, Klaus Seyerlehner and

Dominik Schnitzer
RND RZ1 None
cmbr sim SSPK2 Klaus Seyerlehner, Markus Schedl,

Tim Pohle and Peter Knees
MarsyasSimilarity TLN1 George Tzanetakis, Steven Ness and

Mathieu Lagrange
Post-Processing 1 of
Marsyas similarity
results

TLN2 George Tzanetakis, Mathieu La-
grange and Steven Ness

Post-Processing 2 of
Marsyas similarity
results

TLN3 George Tzanetakis, Mathieu La-
grange and Steven Ness

Table 2.2: Participating algorithms and contributors in the 2010 run of the
MIREX Audio Music Similarity and Retrieval task.

results have not yet been published. As can be seen in Table 2.3, this approach
performed well, though not the best of the participating algorithms.

2.3.2.2 PS09

While Pohle and Schnitzer [2009] was run in 2010, it was submitted for the 2009
run of the task and having most closely aligned with human evaluation, was run
again for comparative purposes. This algorithm uses two distance metrics, a
timbral distance and a rhythmic distance, which are separately normalised then
combined with equal weighting to form the overall distance metric. The timbral
distance is generated through the use of MFCCs, Spectral Contrast Feature
[Jiang et al., 2002] and estimates of the amount of harmonic and percussive
content in a given frame of audio content [Ono et al., 2008]. These frame-by-
frame values are then reduced into a single gaussian describing the distribution
of features across the entire audio sample. The rhythmic distance is found with
a variant of fluctuation patterns using a cent/sone representation [Pohle et al.,
2009].

2.3.2.3 PSS10

The Pohle et al. [2010] system is mostly the same as Pohle and Schnitzer [2009].
It differs in the inclusion of an additional time-related component, similar to
the rhythmic distance component used in the previous submission. In this

32

new component, periodicity is estimated using the full signal rather than onset
patterns and fluctuation patterns as described by Pohle et al. [2009]. Further
the weighting of the components has been adjusted to take into account the
addition of a third. The weights in Pohle et al. [2010] are 70:20:10 for the timbral
component, the new rhythmic component, and the old rhythmic component,
respectively. Looking at Table 2.3, it can be see that Pohle and Schnitzer [2009]
and Pohle et al. [2010] performed at a level that is a statistical a tie, in spite of
the considerable increase in computational complexity in Pohle et al. [2010].

2.3.2.4 RND

This algorithm was included to be used as a random baseline in the task. It
simply generated an M ×M matrix of random values, where M is equal to the
number of songs in the test set. Thus the “top 5” songs returned by a similarity
query will be arbitrarily chosen.

2.3.2.5 cmbr sim

To find similarity in Seyerlehner et al. [2010a], two distances are computed:
block-level similarity and tag-affinity-based similarity. Block-level similarity is
based on block-level features, or features derived from the concatenation of con-
secutive frames of log-scaled magnitude spectrum of audio. The length of these
blocks varies depending on the feature. These features range from a simple
sort of each band in a block to rhythmic patterns analysis measured by taking
the FFT of a sufficiently large block (512 frames) to a block-wise correlation
[Seyerlehner et al., 2010b]. To find similarity, each of the block-level features is
compared separately using the Manhattan distance and joined using a technique
called distance space normalization (DSN) as described by Pohle and Schnitzer
[2007]. The difference applied here is to independently normalise each feature’s
distance matrix by subtracting the mean and dividing by the standard devia-
tion. In the tag-affinity-based similarity, the songs are run through a number
of pre-trained support vector machines as proposed in West et al. [2006]. These
classifiers are trained to find tag affinity using Magnatagatune [Law and Ahn,
2009] and CAL500 [Turnbull et al., 2008]. The affinity for each tag is then
treated as a vector, one per song. The tag affinity based similarity is found by
taking the manhattan distance between these tag affinity vectors. The overall
distance between two songs is simply the addition of the two distances. This
overall distance gave a metric which aligned more closely with the human eval-
uators than any other submitted algorithm, though its performance was within
statistical significance of Pohle et al. [2010], Pohle and Schnitzer [2009] and
Bogdanov et al. [2010].

33

2.3.2.6 MarsyasSimilarity, including post-processing 1 and 2

Tzanetakis [2010] describes the remaining three submissions: TLN1, TLN2
and TLN3. TLN1 is the base similarity algorithm with TLN2 and TLN3 post-
processing the resulting distance metric. To compute the similarity Tzane-
takis [2010] computes timbral, pitch and rhythmic features. To obtain timbral
features, the system extracts MFCCs, spectral centroid, rolloff and flux for
windowed audio frames [Tzanetakis and Cook, 2002]. A look-back mean and
standard deviation of the last 40 frames is held while the raw frame data are
discarded. This results in a 32-dimensional feature to describe the 30-second
clip songs. Pitch information is found by calculating chromagrams for each
frame. A running average for the entire song is used in the same manner as
the timbral features. Finally the rhythmic component is found by calculating
the beat histogram, a relative measure of the strength of tempo for all possible
tempos between 40 and 200 beats per minute (BPM). These three component
features are normalised from 0 to 1 then combined to form one vector per song.
The distance matrix is formed by taking the Euclidean distance between every
pair of vectors. Tzanetakis [2010] fails to explain the post-processing performed
for TLN2 and TLN3, however the results show little difference in evaluation,
regardless of what was done.

2.3.3 Evaluation and 2010 Results

The evaluation process for the MIREX AMS task aims to test how well the
participating algorithms align with human-measured music similarity over the
same dataset. Each participating algorithm outputs an N × N matrix of nu-
merical scores indicating how similar each song in the database of N songs
is to all the other songs in the database. In the 2010 run of the task, 7,000
30-second song clips made up the dataset. Human listeners evaluate a subset
of all possible combinations of songs. This subset was created via a random
selection of 100 songs evenly distributed across 10 genres within the dataset;
the human-evaluated dataset is made up of the five most similar results from
each of these selected songs, across all participating algorithms. The human
evaluators are then asked to quantify the similarity between these pairs of songs
with two scores: a “broad” score of three phrases, not similar, somewhat simi-
lar, and very similar ; and a “fine score”, a numeric measure between 0 and 100
inclusive. Finally, the algorithms’ performance is defined as how well the sim-
ilarities produced by the algorithms align with those produced by the human
evaluators. A bespoke web application called “The Evalutron 6000” is used for
the human side of this evaluation [Gruzd et al., 2007].

The results for all the participating algorithms can be seen in Table 2.3

34

Average Score Genre Neighbourhood Clustering
Fine Broad Top 5 Top 10 Top 20 Top 50

BWL1 49.704 1.078 0.5319 0.5157 0.4987 0.4690
PS1 55.080 1.228 0.5900 0.5695 0.5474 0.5102
PSS1 54.984 1.212 0.6186 0.6004 0.5786 0.5448
RZ1 16.668 0.240 0.0831 0.0865 0.0867 0.0880
SSPK2 56.642 1.248 0.5910 0.5757 0.5583 0.5301
TLN1 45.842 0.940 0.4655 0.4478 0.4287 0.3995
TLN2 46.544 0.970 0.4797 0.4644 0.4448 0.4161
TLN3 46.604 0.968 0.4814 0.4664 0.4467 0.4179

Table 2.3: Aggregate results for each algorithm in the MIREX 2010 AMS task.
Note that while SSPK2 had the best broad and fine scores, PSS1 did better in
terms of genre neighbourhood clustering.

Algorithm Runtime

BWL1 41h 40m
PS1 12h 50m
PSS1 6h 25m
SSPK2 19h 35m
TLN1 1h 20m
TLN2 1h 25m
TLN3 5h 00m

Table 2.4: The runtimes for each of the algorithms participating in the AMS
MIREX task.

and Figure 2.1. These scores are the average of the song pairs retrieved by
each algorithm. For the broad scores the three grading phrases are converted
to the following numbers: not similar, 0; somewhat similar, 1; very similar,
2. In addition to the top line human evaluation, the similarity scores were
also analyzed to see how homogeneous the top N results are based on a priori
genre labels. While the best evaluation scores comes from Seyerlehner et al.
[2010a], all the algorithms are very close in performance with the exception
of the random baseline, which did considerably worse. As such it is worth
considering the runtime performance of these algorithms given that accuracy
was measured to be so similar. The runtimes of each algorithm are shown in
Table 2.4. Here we see that the MarsyasSimilarity [Tzanetakis, 2010] is the
fastest of the non-random algorithms, by a considerable margin.

While the AMS task and evaluation represents the broadest human evalu-
ation of music similarity algorithms, it is not without flaws. Most notable is the

35

Figure 2.1: Aggregate fine scores of each participating algorithm in the MIREX
2010 AMS task.

use of the algorithms as a pre-filter in selecting song pairs that appear in the
human evaluation. This leads to results that may miss similar pairs of songs
in the whole dataset as all algorithms may have missed such items, in order to
scope the evaluation to be achievable in a short time frame with a few dozen
evaluators. On balance, though, these evaluations are a reasonable means to
compare automatic music similarity.

2.4 Recommender Systems in Music

Whereas playlist generation is about listening and playback, recommender sys-
tems as classically defined are about consumption and acquisition. A recom-
mender system is a mechanism for suggested new items for consumption based
on past behavior. In general, this is achieved through optimization based on
user preference of recommended objects for a given user. While a large number
of methods have been explored to fulfill this generalized problem [Adomavicius
and Tuzhilin, 2005; Resnick and Varian, 1997] the established base of recom-
mender systems relies on a technique called collaborative filtering. In collab-
orative filtering users are compared based on how they have rated items in a
collections (e.g. books, films, CDs). An unfamiliar item’s rating can then be
guessed based on the rating behavior of users with similar previous ratings on
items that have been mutually rated [Herlocker et al., 2004]. Collaborative fil-
tering methods can also be used with passive user preference inputs [Barkhuus
and Dey, 2003]. These can include things like purchase history, webpage views
or music play history.

Ratings are a common input method in many recommender systems. For

36

every item in a collection, users can rate the item by giving it a numeric score.
Figure 2.2 shows the rating interface for items in Amazon.com’s catalogue,
which is typical of the ratings systems seen on many websites.

Figure 2.2: A screen capture of the Amazon.com page for the CD ‘Tik Tok
[Import Single]’ by ‘Ke$ha’ showing the rating interface inside the overlaid red
elipse. Here the stars are both the input (submit your rating by clicking on one
of the five stars) and the output (the average rating for across all user rating
for the item is show by the number of stars that are filled).

These ratings can then be used to drive a recommender system by deter-
mining similarity between users by using their rating behaviour. This similarity
can then feed back to the initial user for predictive generation of ratings.

2.5 Finding a Good Playlist

When considering playlist generation it is important to understand the factors
that can lead to a good playlist. Some of these factors relate to the songs
within in a playlist. These factors can include a listener’s preference for and
familiarity with a song, song coherence, the variety of songs and artists in the
set of songs and other less specific factors such as a song’s freshness or coolness.
Elements of the order in which the songs are arranged in a playlist also have
an effect, including song transitions, the overall structure of a playlist and the
occurrence of serendipity. In de Mooij [1997], an evaluation is conducted with
14 participants to ascertain which of eight factors has the greatest effect on a
playlist. The results of this evaluation can be seen in Figure 2.3, showing that
the actual song selection is rated by users as the most important factor. The

37

PR-TN 2003/00735 Unclassified report

4 3 2 1 0 1 2 3 4
0
1
2
3
4
5
6
7
8Songs in the playlist

Transitions between songs
Combination of genres
Combination of artists
Structure (e.g. song order)
Variation/coherence
First song
Last song

Figure 1: Importance of various factors in creating a playlist.

them as much as possible. The playlists to edit were constructed more or less at random, based on
songs from the Easy Access collection. Songs by artists that the participant had indicated not to
be familiar with, were not included in the playlists. Most of the playlists contained an extra high
percentage of songs that the participant already used in the playlists he created in the first part of
the test. This was done to lower the chance that too many songs in the playlists were unfamiliar
and also to make sure that we would obtain some examples of non-preferred combinations of
preferred songs.

Participants were asked to take in mind again the listening situation they had chosen in the previous
task. They had 30 minutes of time for this task.

Questions After editing the playlists, participants were asked to answer a number of questions.
The results where as follows:

1. How much could you improve the quality of the playlists?
For the average playlist:
m = 0.2, s = 1.5 (3 = not at all, 3 = very much)

2. Did you find it easy to improve the playlists by means of deleting and reordering songs?
m = 0 9, s = 1.2 (3 = very easy, 3 = very difficult)

Whether a playlist can be improved depends on the quality of the initial playlist as well
as the available means for improvement. From these results we conclude that the playlists
could on average be improved to a reasonable extent, but not very much. Probably, the
quality of the original playlists was not great and the means of improvement (deleting and
reordering songs) were too restricted to be able to convert them to really good playlists.
Whereas people indicated to find it quite easy to improve the playlists, this does clearly not
mean that the resulting playlists were found very good.

32 c Koninklijke Philips Electronics N.V. 2003

Figure 2.3: The relative importance of various factors in assembling a playlist,
as found and published in de Mooij [1997].

work leaves open the question of what makes the songs right for the playlist. In
particular, the idea of musical taste or the long-term, slow-to-change preferen-
tial commitment to a genre can have an impact. Musical taste can be inferred
from recent listening history [Terveen et al., 2002; Voida et al., 2005]. Other el-
ements can have a further effect on preference, especially a listener’s mood and
the context (i.e. just listening, driving, studying, exercise). One particularly
important factor is how familiar a listener is with a song. It has been shown
that people will often prefer listening to familiar songs that they like less than
over non-familiar songs. Further familiarity is a significant predictor of choice
even when controlling for the effect of liking, anticipated social perceptions and
coolness [Ward et al., 2006].

2.5.1 Coherence and Order

Cunningham et al. [2006] exhaustively examined the motivating factors and or-
ganising principles driving the creating of playlists among an online community
of hobbyists. Both the playlists and the surrounding conversations were anal-
ysed from the forum-driven website Art of the Mix6 leading to set of common
organising principles:

• Artist/Genre/Style – frequently a primer on the subject matter

• Song similarity – playlist by example

• An event or activity – to narrate a particular event such as a ‘road trip’

• Romance – a mix to express one’s feelings for another

• Message – e.g.“ ‘quit being a douche,’ ‘cause I’m in love with you.”

• Mood – a mix that moves from sad to uplifting

6http://www.artofthemix.org

38

http://www.artofthemix.org

• Challenge or puzzle – create a mix to satisfy artificial criteria

• Orchestration – a broad category to include instrumentation and other
sound-related facets of performance

• Characteristic of the mix recipient – e.g. the types of songs required to
complete mix for a given person

• Cultural references – a variety of popular and high cultural reference
points

People make playlists for a variety of reasons as is clearly shown in this listing.
Beyond selection, there are a number of methods that can be used to order
the songs within the playlist set. These can include similarity score, other
attributes derived from the acoustic (tempo, loudness, danceability), social at-
tributes (popularity, hotness), mood attributes, theme or lyrics, alphabetical,
chronological, random, optimising song transitions and novelty orderings. Some
of these ordering technics are more effective in producing playlists that a listener
might find interesting or enjoyable than others. An example of a less effective
ordering driven by alphabetising is in Figure 2.4. One ordering technique that

Figure 2.4: A playlist within iTunes ordered alphabetically by title, courtesy of
Paul Lamere.

is of interest is that of novelty ordering. In novelty ordering, arbitrary rule-
sets are used to create both the song selection and the order of the songs. In
practice this is very similar to the technique referred to in Cunningham et al.
[2006] as “Challenge or Mood.” Examples of novelty ordering that make use of

39

the Echonest’s playlist Application Programming Interface (API)7 have been
discussed by Paul Lamere8 including the following playlist, which meets two
rules: the title of each song is shorter than the song before it by one character
(shown in bold) and the last character of the title from song n − 1 is the first
character in the title for song n.

0. Tripping Down the Freeway - Weezer

1. Yer All I’ve Got Tonight - The Smashing Pumpkins

2. The Most Beautiful Things - Jimmy Eat World

3. Someday You Will Be Loved - Death Cab For Cutie

4. Don’t Make Me Prove It - Veruca Salt

5. The Sacred And Profane - Smashing Pumpkins, The

6. Everything Is Alright - Motion City Soundtrack

7. The Ego’s Last Stand - The Flaming Lips

8. Don’t Believe A Word - Third Eye Blind

9. Don’s Gone Columbia - Teenage Fanclub

10. Alone + Easy Target - Foo Fighters

11. The Houses Of Roofs - Biffy Clyro

12. Santa Has a Mullet - Nerf Herder

13. Turtleneck Coverup - Ozma

14. Perfect Situation - Weezer

One area where song order is particularly important is in the playlists or
sets constructed by dance DJs. Here the primary goal is to make people dance
[Cliff, 1999]. This is done through selecting tracks that mix well, take the
audience on journey and successfully integrate audience feedback [Silby, 2007].
These aims are furthered through the use of seamless song transitions.

The automatic system described by Cliff [2006] attempts to meet these
needs, in part through the use of global tempo change and smooth song transi-
tions. In various environments DJs select songs of varying tempo according to
particular use cases. A selection of these can be seen in Figure 2.5.

7http://developer.echonest.com/docs/v4/playlist.html
8http://musicmachinery.com/2010/07/25/novelty-playlist-ordering/

40

http://developer.echonest.com/docs/v4/playlist.html
http://musicmachinery.com/2010/07/25/novelty-playlist-ordering/

Tempo

Time

Tempo

Time

Tempo

Time

Warm Up Cool Down Nightclub

Figure 2.5: Three common examples of changing tempo curves across a Dance
DJ set, labeled according to use [Cliff, 2006].

The system outlined in Cliff [1999, 2006] is designed to emulate these be-
haviours. Additionally the system creates smooth song transitions by using
dynamic time warping to achieve beat synchronisation while mixing multiple
songs.

2.5.2 The Serendipitous Lack of Order

In contrast to the notion that coherence comes from intentional or well-reasoned
ordering, some work has shown that in certain circumstances a random order
or shuffle of music for listening can result in a high degree of enjoyment [Leong
et al., 2005]. In particular it has been shown that serendipity via a random
order of one’s personal collection can improve the listening experience. However
if the random selection is drawn from a collection that is too large or too
small the likelihood of a positive listening experience is reduced. The use of
random ordering as a tool in listening was examined empirically in [Leong
et al., 2006]. Through the use of their Digital Music Listening Framework the
authors analysed 113 users’ music libraries and listening habits looking at both
organisational practices and ordering techniques. Of particular interest is the
examination of preferred listening mode (shuffle or a sequential order) against
the organisation of music content (constrained or unconstrained), shown in
Table 2.5. The results from this work show a clear preference for random play
when listening to personal collections, though again, the success of the random
ordering in this case is clearly tied to the coherence and personal meaning of
the underlying collection.

2.5.3 Summary

The creation of a good playlist necessitates the balance of many aspects. This
can be considered as a tradeoff between poles across a number of axises. A
simplified summary of these poles can be seen in Figure 2.6. The optimal
balance between these and other related concepts is different for different lis-
teners. Further, for a given user, listening habits and therefore optimal settings
of these tradeoffs are affected by things like mood, time of day and environ-

41

Content Organisation

constrained unconstrained

Preferred
Listening

shuffle 22 69 91
both 4 4 8
sequential 13 1 14

39 74 113

Table 2.5: Shuffle and sequential ordering as a preferred listening methods
against both constrained and unconstrained content organisation methods
[Leong et al., 2006].

Variety Coherence

Freshness

Surprise

Familiarity

Order

Figure 2.6: High-level concepts to balance in a playlist

mental context [Herrera et al., 2010]. Lastly, variety of some kind, whether
from intentional ordering or random shuffle, is essential in the construction of
a listenable playlist. This is self-evident from Figure 2.7.

2.6 Formats and Legal Considerations

As playlists have proliferated with the adoption and spread of the internet,
interchange and serialisation formats have been developed. Some notable ex-
amples of these formats9 include M3U, which is simply a list of files (typically
resolvable URLs), one per line, and XSPF (commonly pronounced ‘spiff’) an
XML schema, an example of which is in Figure 2.8.

Additionally there is an emerging effort to formalize a data model around
playlists and playlist construction using linked data Resource Description
Framework (rdf) ontologies. The Playback Ontology10 covers playlists as well

9Exhaustive and current lists can be found on various websites including
http://microformats.org/wiki/audio-info-formats http://lizzy.sourceforge.net/

docs/formats.html and http://gonze.com/playlists/playlist-format-survey.html

among others.
10The ontology specification can be found here: http://smiy.sourceforge.net/pbo/spec/

playbackontology.html and a brief walkthrough of initial use cases here: http://smiy.

wordpress.com/2010/07/27/the-play-back-ontology/.

42

http://microformats.org/wiki/audio-info-formats
http://lizzy.sourceforge.net/docs/formats.html
http://lizzy.sourceforge.net/docs/formats.html
http://gonze.com/playlists/playlist-format-survey.html
http://smiy.sourceforge.net/pbo/spec/playbackontology.html
http://smiy.sourceforge.net/pbo/spec/playbackontology.html
http://smiy.wordpress.com/2010/07/27/the-play-back-ontology/
http://smiy.wordpress.com/2010/07/27/the-play-back-ontology/

(a) A playlist of songs with the same title, from Spotify.

(b) Another same track playlist, this one with the seed song immediately repeated.

Figure 2.7: Two example playlists demonstrating the fallacy of assuming that
similarity is equivalent to high fitness in playlist construction.

43

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<p l a y l i s t version=”1” xmlns=” h t t p : // xsp f . org /ns /0/”>
<t r a c k L i s t>
<t rack>
< l o c a t i o n>h t t p : // example . com/ song 1 . mp3</ l o c a t i o n>
<c r e a t o r>Led Zeppe l in</ c r e a t o r>
<album>Houses o f the Holy</album>
< t i t l e>No Quarter</ t i t l e>
<annotat ion>I l ove t h i s song</ annotat ion>
<durat ion>271066</ durat ion>
<image>

h t t p : // images . amazon . com/ images /P/B000002J0B . jpg
</ image>
< i n f o>h t t p : // example . com</ i n f o>

</ track>
<t rack>
< l o c a t i o n>h t t p : // example . com/ song 2 . mp3</ l o c a t i o n>
<c r e a t o r>Emerson Lake & Palmer</ c r e a t o r>
<album>Emerson Lake & Palmer</album>
< t i t l e>Lucky Man</ t i t l e>
<annotat ion>This one too</ annotat ion>
<durat ion>276116</ durat ion>
<image>

h t t p : // images . amazon . com/ images / I /41bVr9y%2BKEL. SS400 . jpg
</ image>
< i n f o>h t t p : // example . com</ i n f o>

</ track>
</ t r a c k L i s t>

</ p l a y l i s t>

Figure 2.8: An example playlist serialised as XSPF

44

as other concepts around ordered listening of music such as skip counting. It
is based on the Ordered List Ontology11 and the Music Ontology [Raimond
et al., 2007]. A graph rendering showing an example playlist’s concept instance
relationships is shown in Figure 2.9. The Playlist Ontology represents a still-
maturing effort to create a common data model for playlists, across a diverse
array of playlist creation, storage and playback environments. The need for
such a common model is ever increasing as the ecology of applications around
playlists and playlisting continues to grow and diversify.

2.7 Deployed Tools and Services

Over the past few years a number of software tools, including web services and
applications, have been developed that concern playlists. Among these tools
and services there is a great deal of variation in how playlists are involved, the
interactivity model employed and various other factors. We consider them along
2 axes to form four quadrants, as can be seen in Figure 2.10. These four groups
are labeled “construct non-social,” “consume non-social,” “consume social” and
“construct social.”

2.7.1 Construct Non-Social

There are a plethora of tools that are primarily considered media players that in
addition to simply playing audio allow varying degrees of support for construct-
ing and saving playlists. The most well known of these include: VLC12, Ap-
ple iTunes13, SongBird14, WinAmp15 and Microsoft’s Windows Media Player16

along with many more17.

An emerging type of system in this category is best seen in rush [Baur
et al., 2010]. Rush is designed as recommendation-based interactive model and
visualisation technique to browse and listen to large collections of music. Be-
ginning with a seed song, a set of recommendations is delivered, with one being
selected by the user and added to the play queue. The process then repeats with
the selected songs serving as the new seed for recommended songs. In this way
a playlist is constructed manually, though using automatically selected subsets
of the total database of songs.

11http://smiy.sourceforge.net/olo/spec/orderedlistontology.html
12http://www.videolan.org/vlc/
13http://www.apple.com/itunes/
14http://getsongbird.com/
15http://www.winamp.com/
16http://www.microsoft.com/windows/windowsmedia/default.mspx
17A fairly complete list of audio players can be found at http://en.wikipedia.org/wiki/

Comparison_of_audio_player_software and http://en.wikipedia.org/wiki/Comparison_

of_video_player_software. Note that any player that can play video will be on the second
list and not the first, regardless of its audio capabilities.

45

http://smiy.sourceforge.net/olo/spec/orderedlistontology.html
http://www.videolan.org/vlc/
http://www.apple.com/itunes/
http://getsongbird.com/
http://www.winamp.com/
http://www.microsoft.com/windows/windowsmedia/default.mspx
http://en.wikipedia.org/wiki/Comparison_of_audio_player_software
http://en.wikipedia.org/wiki/Comparison_of_audio_player_software
http://en.wikipedia.org/wiki/Comparison_of_video_player_software
http://en.wikipedia.org/wiki/Comparison_of_video_player_software

F
ig

ur
e

2.
9:

A
re

la
ti

on
al

gr
ap

h
re

nd
er

in
g

of
an

in
st

an
ce

of
th

e
P

la
yb

ac
k

O
nt

ol
og

y,
w

it
h

cl
as

se
s

co
lo

ur
-c

od
ed

an
d

la
be

lle
d

46

Social

Non-Social

ConsumeConstruct

VLC

Apple
iTunes

WinAmp

MoodAgent

Figure 2.10: The distribution of a selection of playlist creation, manipulation
and listening tools represented by their icons or logos. Note Apple iTunes is
both an construction and a consumption system, depending on use.

2.7.2 Consume Non-Social

The breadth of consumption non-social systems can be considered as local
playlist creation assistance tools. That is they help a user to construct playlists
using primarily locally available information, using a variety of techniques. One
of the most common tools of this sort is a feature within Apple iTunes called
“smart playlists” [Voida et al., 2005]. This feature allows a user to specify a
number of rules or constraints on various kinds of metadata which are then
used to create playlists automatically. A broad range of metadata can be used
including common labels such as artist name, track title or tempo (in beats
per minute or BPM) as well as behavioural statistics around the songs such as
number of skips, times played or dated added to library. In many ways this
system can allow for the automatic construction of playlists that are similar to
the sort of playlists made by hobbyists [Cunningham et al., 2006], as discussed
in Section 2.5. However, there are reasons to doubt this particular tool’s pop-
ularity and use. In an informal survey of his readership18, Paul Lamere looked
into how prevalent the use of smart playlists are amongst the readers of his
music technology blog19. The results of this survey, as of 9 September 2010,
can be seen in Figure 2.11. At least among this sample, up take of these lists
is not very high, though the reasons are not given.

Another example from Apple is the iTunes “Genius Mix”, which takes
your collection of music and divides it into 12 top-level genre groupings. A
listener then selects which group to listen to, and songs are chosen at random

18http://musicmachinery.com/2010/07/30/do-you-use-smart-playlists/
19This blog is read by music technologist who are early adopters and as such this survey if

anything represents an overstatement of the uptake of smart playlists.

47

http://musicmachinery.com/2010/07/30/do-you-use-smart-playlists/

Figure 2.11: Smart playlists used per user, an informal survey

from within this set. While the method can be effective, it allows for artist
repetition and lacks many user controls or transparency.

There are also a number of web-based services that offer a personalized
radio service, using various metadata and content-based analytics to generate
playlists based on textual queries or seed songs. Perhaps the most well known
of these services (though not available outside the United States) is Pandora20,
which uses trained listeners to describe music using a large set of binary classi-
fiers referred to as music dna [Clifford, 2007].

Another service along somewhat similar lines are MOG21 and the mobile
device application Moodagent22. Moodagent provides streaming playlists suited
toward a user’s specified ratio of 5 dimensions of ‘mood’: ‘sensual,’ ‘tender,’
‘happy,’ ‘angry’ and ‘tempo.’ The user has the ability to adjust these parame-
ters at any time and the playlist will change accordingly. A screen capture of
the interface can be seen in Figure 2.12.

Van Gulik and Vignoli [2005] describe a method of automatically con-
structing playlists by drawing paths though semantically meaningful spaces,
but removed from specific pieces of music. The dimensions can represent a
wide variety of things, from publication related metadata such as year of re-
lease to metadata describing the content such as tempo. The tool then allows
trajectories to be plotted based on these dimensions. Using the example di-
mensions one could specify a playlist that begins with high BPM in the 1970s,

20http://pandora.com
21http://mog.com
22http://www.moodagent.com/

48

http://pandora.com
http://mog.com
http://www.moodagent.com/

Figure 2.12: The user interface for the mobile application Moodagent

keeps the tempo constant but goes back toward the 1960s then gradually slows
the tempo while increasing the release year to the early 1990s.

Continuing with the idea of drawing a playlist on a created space, Lillie
[2008] provides a visualisation of a collection of music based on a two dimen-
sional principle component analysis (PCA) reduction of a high dimensional
feature space, presenting it as a map. This map can then be navigated to find
single tracks or trajectories can be drawn trough it to create playlists. This work
builds on Lamere and Eck [2007], which creates a three dimensional space using
content-based timbral features. This created space is presented for browsing,
and playlists can be laid out as paths through this space.

2.7.3 Consume Social

Consuming music is frequently a social affair. One of the most popular web-
based services for playlist generation in a social context is Last.fm23 and its radio
player. Last.fm’s core data is the scrobbling history of its users. Scrobbling is
the act of uploading a user’s listening activity as it’s happening. Scrobbling
can be performed in many music listening environments (including many men-
tioned in Section 2.7.1) and as a result last.fm has a very large database of
user listening activity24. This listening activity is combined with collaborative
filtering to create rich recommendations based on listening history [Goldberg
et al., 1992]. It is also used as the basis for a radio player available from the

23http://last.fm
24According to Last.fm over 45,537,161,650 tracks have been scrobble since 2003 (http:

//www.last.fm/community as of 12 September 2010).

49

http://last.fm
http://www.last.fm/community
http://www.last.fm/community

site25. Additionally there are a number of social features built into the user
experience. These features include a dynamic structure of friend connections
with other users and the ability to see what your friends (the users you are
connected with) have been listening to recently. These features can be seen in
the screen captures in Figure 2.13.

The internet radio station Radio Paradise26 is also considered as an con-
sumption social playlisting service. Since the playlists are constructed by a
human DJ, the listeners themselves are not assembling them by hand, as they
would be in the systems described in Sections 2.7.1 and 2.7.4, so they are con-
sidered consumption services from the listener’s perspective. Further, internet
audio streams such as Radio Paradise provide a single stream for all of their
listeners, making for a social experience in common listening. Radio Paradise
further expands this social experience via a song’s comment stream. While com-
ments are tied to individual songs, the particular transitions and play order is
frequently discussed as the audience hears the same playlist and comments on
a song’s thread as it is played. Another significant factor affecting playlist
construction in internet radio is a piece of United States regulation, Digital
Millennium Copyright Act of 1998 (DMCA) (Sec 405.a.2).

The DMCA has a clearly defined set of rules that a radio station must follow
in order to qualify for licensing fees as a broadcaster. If a broadcaster does not
meet these rules, they must make direct arrangements with the copyright holder
(usually a record label or publishing house), which is almost always prohibitively
expensive [Harwood, 2004]. The rules the DMCA dictate in order to qualify as
an internet broadcaster are as follows:

• In a single 3 hour period a station may broadcast:

– No more than three songs from the same recording

– No more than two songs in a row, from the same recording

– No more than four songs from the same artist or anthology

– No more than three songs in a row from the same artist or anthology

• Any program of songs that repeats immediately must be at least 3 hours
long

• Any program that rebroadcasts:

– Programs of less then one hour: no more than three times in a two
week period

25http://www.last.fm/listen
26http://radioparadise.com

50

http://www.last.fm/listen
http://radioparadise.com

(a) The last.fm radio player

(b) A selection of friends recent listening

Figure 2.13: The radio player and social interaction on Last.fm

51

– Programs of greater than one hour: no more than four times in a
two week period

There are a number of additional rules as well, though these relate to metadata
transmission and do not affect song selection or order. While only applicable in
the United States, given the large market the United States audience represents,
this law’s rules tend to be followed by most internet radio stations, including
those based outside the United States.

In addition to internet-based radio stations, traditional terrestrial radio
can also be considered as consumption social playlist generation sources; here
too the listener is not actively participating in the construction of the playlist,
regardless of whether it is created by a live DJ or an algorithm. Many of the
norms of playlist construction come from terrestrial radio. A particularly inter-
esting structure in radio programming is the concept of dayparting [Wells and
Hakanen, 1997]. Dayparting is the idea of dividing the day into a set of (usu-
ally) 5 ‘dayparts’: midnight to 6 am, 6 am - 10am, 10am-3pm, 3pm-7pm, and
7pm to midnight. Each daypart is then programed via a number of parameters
and checks. There are daypart specific controls of items such as gender of artist,
tempo, song intensity, mood and other various style controls. Typically there
are artist separation controls, both globally and for individual artists. There is
also horizontal separation of titles, preventing a song from being played at the
same time of day, on consecutive days. A number of other rules enforce vari-
ous norms such as artist block, preventing multiple songs from the same artist
being played in a row, and additional never-violate and preferred rules. Time
of day information has begun to be used in algorithmically generated music
recommender systems, but this work is still developing [Herrera et al., 2010].

2.7.4 Construct Social

There are a number of web-based services and communities created around
sharing playlists. In general, no assistance is offered in the construction of
playlists, just encoding and sharing. Perhaps the oldest and most established
of these communities is Art of the Mix27. This site is a community-driven forum
for specifying and posting ‘mixes.’

Cunningham et al. [2006] analyses the ways and particulars of playlist for-
mation and suggestion on Art of the Mix. Additionally, a dataset of precrawled
dataset of mixes28 has been used as training data for automatic music similarity
research [Berenzweig et al., 2004].

A number of services dealing with the exchange of playlists are much more

27http://artofthemix.org
28http://labrosa.ee.columbia.edu/projects/musicsim/aotm.html

52

http://artofthemix.org
http://labrosa.ee.columbia.edu/projects/musicsim/aotm.html

focused on a search and retrieval user experience, rather than the bottom-
up community of Art of the Mix. Notable examples in this group include
fiql.com29, Playlist.com30 and mixpod31. These services allow you to search
existing playlists via song metadata such as artist or track name, create your
own playlists and share playlists.

However, since none of these services allow a user easy access to the music
in the playlist, the playlists cannot be auditioned without finding and pur-
chasing the music they contain. A group of web services that offer a solution
to this issue are driven by Spotify API32. Spotify offers on demand streaming
access to a very large database of music (in the order of 108 songs), under ei-
ther a monthly subscription or free with inserted advertisements. Users can
make playlists within Spotify and share them via a number of external sites33.
Recently34, Spotify added a number of social features directly into their appli-
cation, allowing you to share songs and playlists among a group of friends.

Mixcloud35 is a free social-networking platform organized around the ex-
change of long-form audio (i.e. digital audio files with a duration an order of
magnitude longer than a standard song, typically between 30 and 90 minutes
in length), principally music. It provides a means for DJs (aspiring and pro-
fessional) to connect with the audience and into the Web. A similar service is
mixlr36 which focuses on adding social features to centralized multicasting. It
supports live and recorded streams both mixed and unmixed. While its social
connectivity is web-based, the broadcaster is a native application. This native
application layer provides integration with common DJ tools.

An emerging service is that of setlist.fm37. This community driven site is
a wiki for concert playlists. While still new, it is quickly becoming an excellent
resource for song orderings from live performance.

2.7.5 Summary

There are many currently deployed systems that provide playlist-related ser-
vices and features. These can take many forms ranging from music libraries
with an ability to specify and store playback order, to radio stations with vary-
ing amounts of community support, to emerging persistent web services for

29http://fiql.com
30playlist.com
31http://mixpod.com
32http://developer.spotify.com/
33While there are far too many to exhaustively list them, notable examples include: http:

//sharemyplaylists.com/ and http://www.yourspotify.com/.
34http://www.spotify.com/uk/blog/archives/2010/04/27/the-next-generation/
35http://www.mixcloud.com
36http://www.mixlr.com
37http://setlist.fm

53

http://fiql.com
playlist.com
http://mixpod.com
http://developer.spotify.com/
http://sharemyplaylists.com/
http://sharemyplaylists.com/
http://www.yourspotify.com/
http://www.spotify.com/uk/blog/archives/2010/04/27/the-next-generation/
http://www.mixcloud.com
http://www.mixlr.com
http://setlist.fm

playback and sharing. While many of these systems continue to push what
is possible, a complete, automatic solution has yet to be developed, but see
Section 2.8.2 for research efforts toward that end.

2.8 Research Systems for Playlist Generation

There is a small body of work concerning the automatic generation of playlists.
Most of these previous attempts at playlist generation rely on either textual
metadata or content based features. There is current work attempting to merge
these two data sources, which is discussed in Chapter 3. Further, the principal
interface for specifying a playlist through most previous works is by example,
via a single song that starts the playlist.

2.8.1 Human-Facilitating Systems

A number of research systems facilitate the creation and sharing of playlists,
rather than automatically building playlists directly. Hayes and Cunningham
[2000] detail an early collaborative filtering system in which users rate songs
directly. Playlists are then built by finding similar (using Pearson’s correla-
tion coefficient) users via ratings profiles. These playlists are unordered sets
delivered in a random order and once shown to the user they can be streamed,
named, modified and shared.

Moving many of these ideas to a mobile device and introducing the idea of
continuous listening is Social Playlist [Liu and Reimer, 2008]. This system was
built with four design goals: music should help convey status information and
implicit presence; music should help build interpersonal relationships; a good
individual listening experience should be supported; and support of smooth
continuous listening. Based on these goals a system was built and tested. The
workflow for interacting with this system is as follows.

1. Members associate music from their personal library to their activities
and locations.

2. To select the next song to be played, the system picks a random user and
a song associated with that user’s current state .

3. Music is streamed to each mobile device.

4. The device displays the current song and which user associated it their
current state.

The generated playlist’s music is broadcasted to each participating mobile de-
vice via a server. Everyone hears the same music in parallel, as if they were
tuning into a common radio station. The system was field tested with a group

54

of five users over a period of two weeks. While users were generally happy with
the interface, they reported hearing 30% - 50% “bad songs.” This led the users
to switch off the service and instead listen to music from their own libraries. In
order to support continuous listening then, users must be given the ability to
move away from the songs they strongly dislike (i.e. change stations).

Moving away from virtual meetings and non-place, the Jukola system pro-
vides everyone in a physical space a means to vote for the next song to be played
in that space. It is installed in a space for public performance of recorded mu-
sic such as a cafe or bar and consists of two different input devices, one main
larger console and number of smaller devices distributed throughout the space
[O’Hara et al., 2004]. Playlists are constructed on the fly, one song at a time,
via a simple majority voting system across all devices. While any song known
to the system can be voted for at the main console, only the nominees, with an
additional random selection, can be voted on at the portable systems. Nom-
inees for the portable systems are selected at the main station. Additionally,
the system provides backend support for bands to upload material directly, via
a web interface. Together the whole system represents a complete distribution
chain for public performance of recorded music.

2.8.2 Fully-Automatic Systems

A number of fully automatic playlist generation systems have been examined
in the literature. The basic premise in the simplest case is to take a distance
measurement between pairs of songs in a collection; when given a seed song,
return a list of its nearest neighbors as a playlist [Aucouturier and Pachet, 2002;
Ragno et al., 2005]. In the generic this process is as follows.

1. Distances between songs are calculated, typically through the use of
an extracted feature with a statistical average or dimensional reduction
applied. Standard examples include Mel-frequency cepstral coefficients
(MFCC) summarised using Gaussian mixture models (GMM). Distances
between GMMs are calculated, usually via earth mover’s distance or Kull-
back–Leibler divergence [Aucouturier and Pachet, 2004; Berenzweig et al.,
2004; Pampalk, 2006].

2. A seed song and distance threshold are then selected. In some systems
the distance threshold is selected directly whereas in others the threshold
is selected indirectly based on the number of songs that will be within the
radius of the threshold, to create a playlist of a given length of songs.

3. The playlist is created using all the songs inside the threshold radius.

This process is illustrated in Figure 2.14.

55

(a) An initial projection of
songs, showing their dis-
tance from each other in a
metric space.

(b) A seed song has been se-
lected (now a star) and a ra-
dius of interest is shown.

(c) Finally, songs within the
threshold radius will be in-
cluded in the playlist (now
squares) and outside this ra-
dius will not be used (un-
changed shape).

Figure 2.14: The process of nearest neighbour unordered playlist creation

Logan [2002] describes a graph-based variant of this process. In this work
a weighted graph is constructed using acoustic similarity based on MFCCs and
summarised with a single Gaussian model. Playlists are then taken from this
graph by the following means: a seed song and desired playlist length of N songs
are chosen; the path of length N with the smallest total weight is selected as
the playlist. This method was then compared the the nearest neighbors method
with the results being shown to be fairly similar when evaluating using genre,
artist and album labels. A selection of results from this work can be seen in
Table 2.6.

In work fairly indicative of textual metadata playlist generation, Platt et al.
[2002] uses Gaussian-process regression, a form of meta-training, to formulate a
kernel based on text metadata hand entered describing a large corpus of albums.
The metadata used is quite extensive; types and examples for each type can be
seen in Table 2.7. The trained kernel is then used to generate Listener-to-Self
type playlists that are shown to better predict a listener’s playlists than a kernel
which has been designed by hand. While this method is only lightly evaluated it
shows promise. Like any system based purely on textual metadata, this system
can only be as good as the metadata of the user’s collection. A system such
as this would not do well with a set of poorly formed, missing or incorrect
metadata as the playlists generated are optimised around metadata, with no
regard for the audio.

Another variant of the textual metadata case uses social relationships and
common taste to make tailored playlists through collaborative filtering [Avesani
et al., 2002; Hayes and Cunningham, 2004]. In this approach, by finding users
with overlapping interests, recommendations can be made based on the strength

56

Relevance Scheme
mean relevant songs in playlists

Size 5 Size 10 Size 20

Same Genre
Trajectory, 1

3.26 6.13 10.75
Same Artist 1.08 1.48 1.68
Same Album 0.89 1.11 1.22

Same Genre
Trajectory, 2

3.33 6.37 12.08
Same Artist 1.23 1.89 2.73
Same Album 1.01 1.49 2.00

Same Genre
Feedback

3.40 6.54 12.46
Same Artist 1.27 1.96 2.83
Same Album 1.05 1.54 2.07

Table 2.6: Relevance of playlists generated via two graph trajectories and k-NN,
evaluated against genre, artist and album identity.

Metadata field Example Values N

Genre Jazz, Reggae, Hip-Hop 30
Subgenre Heavy Metal, I’m so sad and spaced out 572
Style East Coast Rap, Gansta Rap, West Coast Rap 890
Mood Dreamy, Fun, Angry 21
Rhythm Type Straight, Swing, Disco 10
Rhythm Description Frenetic, Funky, Lazy 13
Vocal Code Instrumental, Male, Female, Duet 6

Table 2.7: Metadata fields and example valued from Platt et al. [2002]. N is
the number of possible values for a field.

57

of feedback from others with similar interests who have already listened to
unknown works.

Moving away from generation methods reliant on a single seed song, Trav-
eller’s Sound Player uses an approximate solution to the Travelling Salesman
Problem (TSP) to generate tours through a collection of music [Knees et al.,
2006]. The system uses a combination of content-based song and web-based
artist similarity to generate a distance matrix. Here ‘web-based artist similar-
ity’ is created by weighted terms found on the top 50 websites returned by a
google search for the artist’s name and the term ‘music.’ These artist similari-
ties are used to create a Self-Organising Map (SOM) [Kohonen, 1990], clustering
similar artists together. Every artist in the same SOM cluster then has their
songs compared via an acoustic similarity measure, using MFCCs and GMMs,
creating a song to song transition model for the entire collection such that the
sum of the distances of neighbouring songs in minimal. An approximation of
the TSP is used to find tours through the entire collection. This algorithm
was then tested on two collections of about 3000 tracks each with a number of
SOM cluster sizes to vary the portion of the collection compared via acoustic
analysis. The resulting tours were then evaluated in terms of the frequency of
neighbouring tracks changing genre, showing that for these collections a 5 × 5
SOM (25 clusters, each with about 120 audio tracks) performed best. This ar-
gues for a balanced approach between metadata sources encoding sociocultural
factors (here the weighted terms from webpages) and acoustic features to form
similarity measures.

As both Logan [2002] and Knees et al. [2006] make clear, many playlist-
generating methods depend on graph-theoretic techniques for construction. In
addition to the techniques of k-NN and TSP used in these papers, other tech-
niques to generate playlists for various use cases can be taken from graph theo-
retic approaches. The minimum-spanning tree problem attempts to find a tree
(i.e. a graph in which every pair of nodes is connected by exactly one simple
path) with the minimum number of edges. In the case of weighted edges, where
some edges represent a longer or shorter distance than others, the minimum
spanning tree becomes nontrivial, finding not the minimum number of edges
but the minimum sum of weights necessary to create a tree from a given graph
[Graham and Hell, 1985]. The shortest-path problem is one of finding the path
which is traverses the lowest total distance between two nodes in a graph [Drey-
fus, 1969]. In cost networks this is also described as finding the ‘cheapest’ path,
though the underlying algorithms in both cases are equivalent. These two graph
problems are illustrated in Figure 2.15.

58

2

4 4
3

1
5
9 10

18
8

8
9

9

9

2
46

3 9

9

7

(a) A graph showing the minimum
spanning tree in bold.

9

2

14

9

7

10

15

11

6

1

3

2

6
5

4

(b) A graph showing the shortest
path from node 1 to node 5.

Figure 2.15: Example solutions to the ‘shortest path’ and ‘minimum spanning
tree’ problems. The numbers next to each edge are the weight or cost of a given
edge

In addition to modelling songs as nodes of a connected graph, it is common
in automatic music similarity work to model the relation between songs as
points in a low dimensional space. These low-dimensional spaces are typically
created by extracting higher dimensional features and applying a dimensional
reduction technique such as Multi-Dimensional Scaling (MDS) [Chen et al.,
2008] or Principal Component Analysis (PCA) [Jolliffe, 2005]. Once the space
has been created, there are a number of ways to create playlists to traverse
them. While the kNN approach discussed earlier required only specifying a
seed song, if a seed song and a final song are specified a path can be found to
minimise the distance between any one transition. This technique can be seen
in Figure 2.16.

(a) A number of songs
mapped to a 2D space.

(b) The start (star) and end
(cross) songs have been se-
lected.

(c) A path is selected min-
imising the distance be-
tween any single song tran-
sition.

Figure 2.16: The generic process of finding a path through a map of songs with
the start and end songs specified.

59

An example of work close to this idea is Flexer et al. [2008]. Rather than
project distances onto some n dimensional space, KL divergence between gaus-
sian summaries of MFCCs of song pairs is taken directly. Ratios of these direct
measures replace a projected distance space. For each song i in the collection,
the divergence is calculated between the start song s (DKL(i, s)) and end song
e (DKL(i, e)). If the song is not within the closest d% of songs from either the
start or end song, it is ignored. For all remaining songs compute the divergent
ratio:

R(i) =
DKL(i, s)
DKL(i, e)

(2.5)

The ideal position to find a song when moving from the s to e is then computed.

R̂(j) = R(s)− jR(s)−R(e)
p+ 1

(2.6)

Where p is the desired number of songs in the list. Finally, songs that best
meet the ideal positions are found (note that once a song has been selected it
is removed from the candidate list):

Sj = argmini=1,··· ,m |R̂(j) = R(i)| (2.7)

The resulting playlists were then evaluated both objectively and subjectively.
For the evaluation playlists were generated using 50 randomly selected songs
from each of 6 genres as start and end songs, with the playlist always ending
in a different genre than it started in. Objective analysis tested to see if a
playlist created from song A to song B contained songs of the same genre as
A and B. Further, at the beginning (first third) of the playlist most of the
songs should come from the genre of song A, at the end (last third) most of
the songs should be drawn from the genre of B and in the middle third the
songs should be a mix of the genres of both songs. Here the results varied,
with some genres dominating and overwhelming others, though with playlists
between two well defined (in timbre space) genres the result is quite good. The
aggregated results for playlists from “Hip-Hop” to “Rock” and “Funk” to “Pop”
are shown in Table 2.8. The subjective analysis had evaluators listen to all the
songs in a playlist using a cross-platform media player. The evaluator would
listen to the start and end songs, then the songs in the between, freely moving
through the playlist. For each playlist the evaluator would then specify how
many of the songs were felt to be “outliers” and whether the presented order
was “apparent.” The results of this evaluation can be seen in Table 2.9.

In Pampalk et al. [2005] a playlist generation method is described which
relies on an acoustic distance to determine a song’s nearest neighbours. This

60

Hip-Hop Reggae Funk Electronic Pop Rock

First third 33 5 2 15 8 38
Middle 5 1 2 7 4 81
Last third 2 0 3 4 2 88

(a) The aggregated results of playlists from “Hip-Hop” to “Rock.”

Hip-Hop Reggae Funk Electronic Pop Rock

First third 19 3 8 28 13 29
Middle 17 4 4 20 19 36
Last third 12 3 4 22 16 42

(b) The aggregated results of playlists from “Funk” to “Pop.”

Table 2.8: The aggregated genre labels of playlists going from “Hip-Hop” to
“Rock” and “Funk” to “Pop.” The bold portions indicate the expected result
based on the genre labels of the start and end songs.

Genres number of
outliers

order apparent

from to yes somewhat no

Hip Hop Reggae 4.7 x xx
Hip Hop Funk 1.7 xx x
Hip Hop Elect 1.3 xxx
Hip Hop Pop 2.7 xx x
Hip Hop Rock 0 xxx
Reggae Funk 0.7 xx x
Reggae Elect 1.3 xxx
Reggae Pop 1.3 xxx
Reggae Rock 0.3 xx x
Funk Elect 1.0 xx x
Funk Pop 1.7 xx x
Funk Rock 0 xx x
Elect Pop 0 xxx
Elect Rock 0 xx x
Pop Rock 0 xxx

Average 1.1 71.1% 17.8% 11.1%

Table 2.9: Subjective evaluation from Flexer et al. [2008], each x represents a
third of response.

61

nearest neighbor list is presented as the user’s initial playlist, which is then
steerable via the use of a skip button. The skip button allows the recommenda-
tions to get better over time. These playlists are roughly analogous to a playlist
somewhere in between a Peer to Peer playlist and the Expert to Listener case
in that an expert is created over time by combining user feedback and similar
user preference.

2.8.3 Evaluation

The evaluation of a playlist generation system presents a number of challenges
due to the particulars of the task. A few evaluation techniques have been
discussed in previous sections alongside their use; due to the importance and
difficulty in evaluation, a survey of approaches is presented, along with the
application of some objective analysis techniques to available services’ playlists.

2.8.3.1 Subjective Evaluation

Perhaps the most obvious evaluation technique for a music informatics tech-
nique is controlled direct audition (e.g. listening tests). One of the most com-
plete examples of listening tests for playlist evaluation was conducted in Pauws
and Eggen [2002]. Direct audition was used to test five hypotheses with re-
gard to the authors’ playlist generating system, Personalized Automatic Track
Selection (PATS):

1. Playlists compiled by PATS contain more preferred songs than randomly
assembled playlists, irrespective of a given context-of-use.

2. Similarly, PATS playlists are rated higher than randomly assembled
playlists, irrespective of a given context-of-use.

3. Successive playlists compiled by PATS contain an increasing number of
preferred songs.

4. By extension, successive PATS playlists are successively rated higher.

5. Successive playlists compiled by PATS contain more distinct and preferred
songs than randomly assembled playlists.

The evaluation had 20 participants, 17 male and 3 female. Each participant
attended a total of eight sessions over four days. For each session, a user would
choose a seed song for preselected context-of-use, or real-world environment in
which the music is meant to be heard (i.e. dance party, a romantic evening or
traveling in a car). Over the duration of the tests, two contexts-of-use were used
across four sessions for each participant. After a seed song was selected, two
playlists of 11 songs each were created, one using the PATS system and another

62

through random selection. A one minute excerpt from each song in each playlist
is then played for the listener. For each of these excerpts the listener assigns
a judgement of suitability of a given song and then rates the entire playlist for
overall fitness. These two assertions are used to create three measurements:
precision, the proportion of songs in a playlist deemed as suiting the given
context-of-use; coverage, the cumulative number of songs that suited the given
context-of-use and that were not already present in the previous playlists, and
ratings score, the participants’ direct rating from 0 to 10, with 10 being the
highest, of each playlist. Overall, using these metrics the PATS system was
shown to significantly outperform the random selection of playlists. However,
this difference was mostly flat, not showing the desired improvement over time
within the given metrics. These results are directly usable as they are human-
driven. This comes at a cost, as evidenced in the small sample and use of
one-minute excerpts rather than whole songs.

In an effort to investigate the quality added by various orderings of mu-
sic and people’s ability to discriminate between the sources of playlists, Paul
Lamere conducted a web-based survey38 comparing playlists i) from the internet
radio station Radio Paradise, ii) automatically generated via a hidden Markov
model (HMM) trained on the Radio Paradise playlist, and iii) random selection
from the set of songs occurring anywhere in these playlists. The playlists from
Radio Paradise represent 18 months of continuous logs from January 2007 to
July 2008. This gives 45,283 playlists containing 6,325 unique tracks from 4,094
albums by 1,971 artists. The average length of these playlists is 4.3 songs.

For each evaluation, a listener is presented with 12 ordered playlists with
the ability to play the songs in the list in any order and as many times as
the listener would like. After listening to the songs in a playlist the listener
rates the playlist from 1 to 5 with 5 being the highest and attempts to guess
whether the playlist was generated by a human expert (Radio Paradise DJ),
algorithm (HMM), or via random selection. The survey rating for each gener-
ator type, both the assumed type and the actual type are shown in Table 2.10
and the confusion matrix across the playlist creation types is shown in Table
2.11. The results from this survey illustrate an assumed order of fitness from
listeners based on the generator source. Table 2.10 shows that people expect
their favourite playlists to have been made by human experts with those rated
slightly lower coming from an algorithm and the least favourable being cre-
ated by random selection. However, as is evident in the right half of the same
portion, when the evaluators ratings are grouped by the correct labels, this

38The survey can be taken at http://labs.echonest.com/PlaylistSurvey/ with extended
information at http://musicmachinery.com/2010/06/18/the-playlist-survey/.

63

http://labs.echonest.com/PlaylistSurvey/
http://musicmachinery.com/2010/06/18/the-playlist-survey/

Guessed labels True labels

label rating count rating count

Human Expert 3.33 368 2.49 400
Algorithm 2.76 373 2.63 403
Random 2.08 343 2.64 386

Table 2.10: Aggregate ratings from Lamere’s playlist survey. Note that the
counts for guessed label ratings are a bit lower as some of those taking the
survey did not guess the creation mechanism but did rate a given playlist.

Guessed label

Human Expert Algorithm Random

true label
Human Expert 121 124 112
Algorithm 122 126 123
Random 125 121 107

Table 2.11: The confusion matrix between actual generator source and the
listeners’ assumed generator source for the three kinds of generated playlists in
Lamere’s playlist survey.

ordering falls away, with all three sources being within standard error of each
other. This shows that in spite of preconceived notions the evaluators might
have, all three methods of ordering perform about as well. From this data it
appears that listeners expect human experts to outperform algorithms which
should in turn outperform random choice, though these listeners’ own rating
betray their expectations. Note that this result is almost certainly tied to the
fact that all three of these generation methods selected and ordered songs from
the same collection set, as created by the human-expert (the DJ at Radio Par-
adise, Bill Goldsmith). So in some ways the situation is similar to the situation
described in Section 2.5.2 when looking into shuffle ordering: with a coherent
set of songs, intentional ordering becomes less necessary and random order can
lead to serendipity.

Subjective evaluation, while costly in both time and resources, is the only
way to determine the fitness of a playlist generation method for human listen-
ers. It is clearly not a panacea, since when directly asked, people are not the
best discriminators, highlighting the necessity of consistently good experimental
design39.

39That is to say, it is better to ask human subjects ‘Do you like this (for this situation)?’
rather than ‘Where did this come from?’ or ‘Who made this?’ When doing subjective exper-
imentation, ask subjective questions

64

source: RP Musicmobs AotM Pandora

Playlists 45,283 1,736 29,164 94
Unique Artists 1,971 19,113 48,169 556
Unique Tracks 6,325 93,931 218,261 908
Mean Number of Songs 4.3 100 20 11
Duplicate Artists 0.3% 79% 49% 48%
Consecutive Same Artist 0.3% 60% 20% 5%

Table 2.12: Basic statistics for the playlist used for objective evaluation, by
source. Note that the Pandora playlists were gathered by directly using the
service, leading to a small sample from 44 separate stations. RP is internet
radio station Radio Paradise and AotM is the website art of the mix.

2.8.3.2 Objective Evaluation

One of the most common ways to analyse playlists in an objective way involves
measurements of similarity across the member songs by looking at the occur-
rence of identical genre, artist or album labels [Flexer et al., 2008; Logan, 2002]
or the likelihood of these labels to change across neighbouring members of a
playlist [Knees et al., 2006]. While this gives a reasonable measure of homo-
geneity across a playlist, in light of the elements of a good playlist discussed in
Section 2.5, it is unclear if a measure of homogeneity corresponds to fitness. A
bag of similar tracks is not the same as a suitable playlist. In order to have a
better sense of possible objective measures we introduce the notions of tag di-
versity and playlist cohesion and apply them to playlists from existing services
[Fields and Lamere, 2010]. These measures were used on playlists gathered
from a number of sources; some basic statistics about the playlists are shown
in Table 2.12.

Tag diversity is a measure of the song homogeneity in a playlist. This is
a ratio of the number of unique tags describing the artists of the tracks in a
playlist versus the total number of artist tags in a playlist. The artist tags were
retrieved from Last.fm in 2007 and were then filtered so only tags that were
applied by multiple people were retained Eck et al. [2007]. The average tag
diversity of the playlists from each of the services being examined along with
the tag diversity of randomly generated lists from the services’ set of tracks
used to create the lists is shown in Table 2.13. While similar in intent to the
previously-mentioned bag of similar tracks evaluation methods, by using social
tags the precision and complexity encoded in the measure is considerably better
then standard metadata such as genre labels.

We see considerable variation in the homogeneity of playlists produced by

65

Actual Random

source mean whole mean whole

Radio Paradise 0.74 0.13 0.75 0.13
Musicmobs 0.29 0.18 0.51 0.13
Art of the mix 0.48 0.17 0.61 0.11
Pandora 0.44 0.20 0.64 0.19

Table 2.13: Artist tag diversity of playlists retrieved from various sources, com-
paring both the mean for all playlists and the diversity of the whole set of songs
for each source

these services, as might be expected given the diverse use cases they aim to
meet. Radio Paradise, having not just the highest diversity but maintaining
that diversity through the randomisation of the playlists, may give a window
into the song selection process used in the playlist turing test. Also of note
is Musicmobs, having both the longest playlists (mean is 100) and the lowest
diversity. This bears out in qualitative examination of the data, where many
of the playlist are on topics such as “artist retrospective” giving a curated tour
through an artist’s discography.

Playlist cohesion is a measure of the average step size between songs across
a playlist. In order to compute the cohesion of a given playlist, we first create a
weighted connected graph of an item space. The level of representation of the
nodes in the graph determines the cohesion level examined. For any ordered
playlist, find the shortest path which traverses the sequence of songs in the
playlists. The average step size (i.e. total weight) between playlist items is the
the cohesion of a playlist. An example of cohesion measured using an arbitrary
graph is shown in Figure 2.17

To calculate cohesion on the collected playlists, we use two different
weighted graphs, generating two cohesion measures. The first graph is of artist
relationships from MusicBrainz40. Here the nodes are artists and the edges rep-
resent an artist-to-artist relationship. We weight these relationships as shown
in Table 2.14. These weights attempt to encode the relative strength of various
kinds of artist-to-artist interactions. These particular weightings were origi-
nally used in the Six Degrees of Black Sabbath41 graph walking project. The
second graph also represents artists as nodes. The edges are created between
similar artists according to The Echo Nest’s comprehensive artist similarity42.

40http://musicbrainz.org
41http://labs.echonest.com/SixDegrees/
42http://developer.echonest.com/docs/v4/artist.html

66

http://musicbrainz.org
http://labs.echonest.com/SixDegrees/
http://developer.echonest.com/docs/v4/artist.html

1
3

2
2

4

2 3 1
3

3
4

5

4
5

5
4

2
1

5
3

2
1

2
2

11
4

5
3

1

32

Z

Y

XW

UV H I
J

T

S

O

R
Q

P

N
M

L
KG

FDC

E

B
A

1

Figure 2.17: This graph shows the playlist [A,E,U,X] with the shortest path
between each node [3, 7, 6] for a cohesion of 16

3 = 5.33

edge type weight

Is Person 1
Member of band 10
Married 20
Performed with 100
Composed 250
Remixed 500
Edited Liner Notes 1000

Table 2.14: Weights assigned to the various artist-to-artist relationships in the
MusicBrainz artist graph as used to calculate playlist cohesion.

67

MusicBrainz Echo Nest Sim

Source Cohesion Global weight Cohesion Global weight

Radio Paradise 0.08 0.06 2.27 1.0
Pandora 0.11 0.12 1.57 1.4
MusicMobs 0.13 0.10 2.71 1.7
Art of the mix 0.14 0.10 3.02 1.4
Random (RP) 0.27 0.22 4.02 1.2
Random (graph) 0.39 0.45 7.89 1.7
Random (AotM) 0.56 0.19 7.00 1.1

Table 2.15: Playlist cohesion from both the MusicBrainz artist graph and the
Echonest artist similarity graph.

This similarity is also used to weight the edges. In order to construct the path
of a playlist on these artist graphs, we use the artist credited with each song in
a playlist, creating an ordered list of artists. Between each pair of neighbouring
artists, cohesion is calculated, with these individual cohesions averaged across
a playlist. The resulting average cohesion for each playlist source on both
graphs is shown in Table 2.15. Both the MusicBrainz and Echonest graphs
show Pandora’s playlists as being the most cohesive and one of the random
generators being the least cohesive. This is unsurprising as Pandora’s artist ra-
dio playlists typically feature a very homogenous selection of artists by design
and the random graphs are selecting equally from across the entire dataset,
giving a heterogeneous selection of artists in the produced playlists.

2.9 Discussion

We have proposed the consideration of a playlist as a specialised form of a
recommender system. To inform this framing a brief history of playlist creation
was then presented. This history exposed the dependency of playlist creation on
member songs’ relationships to one another, thus their similarity. Therefore,
a discussion of music similarity followed, focused on current state of the art
in automatic music similarity, as represented by the MIREX 2010 AMS task.
Using this background, we surveyed currently deployed tools of throughout the
ecosystem of playlist generation, from audio library management software to
web-based radio and music-centric social networks. The survey then turned to
research systems which are similarly varied, though they tend to focus more on
content and less on users. Finally, we reviewed current methods of evaluation
along with some proposed novel methods of evaluation, which were used and
shown to be of interest when applied to currently deployed systems.

68

One of the most critical insights given all of this is the dependency between
music similarity (or more broadly, the various relationships between pieces of
music) and the construction of playlists. When we examine the state of the
art in automatic music similarity, it is apparent that the focus is principally
on content-based similarity. Yet recent work shows that a much of a person’s
musical taste is driven not by information with a digital audio recording of a
piece of music, but rather social-cultural factors [Laplante, 2010]. This is not to
say that content-based methods should be abandoned; rather, this speaks to a
need to hybridize automatic similarity methods to include socio-cultural infor-
mation, while maintaining a working understanding of content-based similarity,
especially when determining final song order.

It is also impossible to ignore the rapidly-changing circumstances of music
distribution, both commercial and amateur. Web-based streaming services,
whether supported by advertisement or subscription, such as Spotify and Mog
are rapidly changing assumptions about the ownership of recorded music. These
services are becoming more ubiquitous with the continued growth on broadband
on mobile phones, leading to constant access to near-complete collections of
commercial music. As services of this type stabilise and become ubiquitous,
the line between music that is yours and music you want to listen to fades.
With it, what it is to recommend a piece of music shifts from a suggestion to
purchase to a suggestion to listen. As a result, the playlist will cease to be a
music recommender, but rather the music recommender. It is in this context
that we will present a more socially aware hybrid similarity space, a deployed
web-radio system using playlist from this space and an improved metric to
describe and compare playlists, given the importance of social context.

69

Chapter 3

Multimodal Social Network Analysis

“We can no longer maintain any distinction between music and dis-
course about music, between the supposed object of analysis and
the terms of analysis.”
–Bruce Horner, Discourse, 1999

3.1 Introduction

As more freely-available audio content continues to become accessible, listeners
require more sophisticated tools to aid them in the discovery and organization
of new music that they will find enjoyable. This need, along with the ad-
vent of Web-based social networks and the increasing accuracy of signal-based
music information retrieval, has created an opportunity to exploit both social
relationships and acoustic similarity in recommender and discovery systems.
However, current systems have tended to use one of these techniques in isola-
tion. In our view, combining these techniques provides a means to improving
the understanding of the complex relationship between song objects that ulti-
mately will lead to improved song recommendation. The most obvious way to
do that is to base recommendations on more information than is provided by
a single distance measure between songs. This would allow the production of
systems capable of mediating content-based recommendations with given social
connections and the construction of socially structured playlists.

Motivated by this, we examine the Myspace artist network. Though there
are a number of music-oriented social-networking websites (e.g. Soundcloud1,
Jamendo2, etc.), Myspace3 is the de facto standard for web-based music artist
promotion. Although exact figures are not made public, recent estimates sug-
gest there are over 8 million artist pages4 on Myspace.

1http://www.soundcloud.com/
2http://www.jamendo.com/
3http://www.myspace.com/
4http://techradar1.wordpress.com/2008/01/11/facebookmyspace-statistics/

http://www.soundcloud.com/
http://www.jamendo.com/
http://www.myspace.com/
http://techradar1.wordpress.com/2008/01/11/facebookmyspace-statistics/

The Myspace social network, like most social networks, is based upon undi-
rected relational links between friends designating some kind of association. A
link is created when a user makes a request, and another accepts the request
to become friends; both users are then friends and an undirected link is es-
tablished. Within each Myspace user’s friends there is a subset of between 8
and 40 top friends. While generic friends are mutually confirmed, individual
users unilaterally elevate friends to become top friends from the generic friends
set. It is these top friends which are displayed in a user’s profile page – other
friends require one or more click-throughs to access them. In addition, any user
can declare themselves as an artist which requires them to provide audio or
video content. In our work we concern ourselves only with these artist users
to limit the scope of our investigation to only those nodes on the graph that
have audio content. For the purpose of this paper, artist and artist page are
used interchangeably to refer to the collection of media and social relationships
found at a specific Myspace page residing in Myspace’s artist subnetwork.

Social networks present a way for nearly anyone to distribute their own
media. As a result, there is an ever-larger amount of available music from an
ever-increasing array of artists.

1. Given that this music is published within a relational space, how can we
best use all of the available information to discover new music?

2. Can both social metadata and content-based comparisons be exploited to
improve discovery of new material?

3. Can this crowd-sourced tangle of social networking ties provide insights
into the dynamics of popular music?

4. Does the structure of a network of artists have any relevance to music-
related studies such as music recommendation or musicology?

To work towards answering the questions posed above, we explore a subset
of the artist network and consider only their top friend connections. We analyse
this network and measures of acoustic distance (according to techniques using
content-based analysis, which we will describe in the next section) between these
artists. Furthermore, we identify communities of artists based on the Myspace
network topology and attempt to relate these community structures to musical
genre. Finally, we present a prototype system of music playlist generation, with
particular attention paid to the means for its evaluation.

Immediately following this section is a review of relevant literature from
complex network theory and signal-based music analysis. Next, a detailed dis-
cussion of our data acquisition methods to build a sampled data set is presented.

71

This is followed by a broad analysis of this data set in Section 3.3. The ini-
tial experiments into the relationship between the social connectivity and the
acoustic feature space are described and their results presented and discussed
in Section 3.4. Finally, the implications of this chapter are explored in Section
3.5 followed by connections for playlist creation in Section 3.6.

3.2 Networks and Audio

We begin with a discussion of existing tools for the analysis and manipulation
of networks in Section 3.2.1. This section covers complex network analysis,
network flow analysis, particular issues pertaining to networks of musicians
and community structure. In Section 3.2.2 we examine highlights of past work
in audio content-based music similarity.

3.2.1 Existing Tools for Networks

3.2.1.1 Complex Networks

Complex network theory deals with the structure of relationships in complex
systems. Using the tools of graph theory and statistical mechanics, physicists
have developed models and metrics for describing a diverse set of real-world
networks – including social networks, academic citation networks, biological
protein networks, and the World-Wide Web. It has been shown that these
diverse networks often exhibit several unifying characteristics such as small-
worldness5, scale-free degree distributions, and community structure [Newman,
2003].

A given network G is described by a set N of nodes connected by a set E
of edges. Each edge is defined by the pair (i, j) of nodes it connects. This pair
of nodes are neighbours. If the edges imply directionality, i.e. (i, j) 6= (j, i), the
network is a directed network. Otherwise, it is an undirected network. Since we
are dealing primarily with the top friends sub-network of myspace artists, in
this paper all edges are directed unless otherwise stated. In some graphs each
edge (i, j) will have an associated label w(i, j) called the weight. This weight is
sometimes thought of as the cost of traversing an edge, or an edge’s resistance.
The number of edges incident to a node i is the degree ki. In a directed net-
work there will be an indegree kini and an outdegree kouti corresponding to the
number of edges pointing into the node and away from the node respectively.
The geodesic dij is the shortest path distance from i to j in number of edges
traversed. The largest geodesic distance in a network is known as the diameter.

We will discuss some of the characteristics of the Myspace artist network

5A network is considered to exhibit small-worldness when most nodes are not neighbours
yet can be reached through a relatively small number of connected intermediary nodes Watts
[1999].

72

A

B

C D

E

F

2

2
1

3

3

3

1

2

4

Figure 3.1: A simple flow network with directed weighted edges. Edge width is
representative of node capacity, which is also labelled on each edge. Treating
node A as the source and node F as the sink, the maximum flow is 4.

in 3.3.2. For a more in-depth discussion of complex network-analysis techniques
the reader is referred to [Costa et al., 2007; Newman, 2003].

3.2.1.2 Network Flow Analysis

The basic premise in network flow analysis is to examine a network’s set of
nodes as sources and sinks of some kind of traffic [Ahuja et al., 1993]. Typically,
though not exclusively, flow networks are directed, weighted graphs. Many use-
ful measures for determining the density of edge connectivity between sources
and sinks can be found in this space [Nagamochi and Ibaraki, 1992]. One of
the most common among them is the maximum flow, which is a means of mea-
suring the maximum capacity for fluid to flow between a source node to a sink
node or, equivalently, the smallest sum of edge weights the edge of which must
be cut from the network to create exactly two subgraphs, one containing the
source node and one containing the sink node. This equivalence is the maxi-
mum flow/minimum cut theorem [Elias et al., 1956]. If the edges in a graph are
unweighted, this value is also equivalent to the number of paths from the source
to the sink which share no common edges. Mature algorithms, incorporating
a number of optimization strategies, are available for computing the maximum
flow between nodes [Ahuja et al., 1993; Goldberg and Tarjan, 1988].

An example of Maximum Flow can be seen on the network in figure 3.1.
The narrowest flow capacity from node a to node f are the edges (a, b) and
(a, c), where w(a, b) +w(a, c) = 4. The maximum flow can simply be found by
taking the sum of the magnitude of each edge in the minimum cut set.

The few examples of network flow analysis being applied in music infor-
matics deal primarily with constructing playlists using segments of a complete
solution to the Traveling Salesman Problem [Knees et al., 2006]. Others use
exhaustive and explicit textual metadata without comparisons to content-based
metrics [Alghoniemy and Tewfik, 2001].

73

3.2.1.3 Musician Networks

Networks of musicians have been studied in the context of complex network
theory – typically viewing the artists as nodes in the network and using either
collaboration, influence, or similarity to define network edges. These networks
of musicians exhibit many of the properties expected in social networks [Cano
et al., 2006; Gleiser and Danon, 2003; Park et al., 2007]. However, these studies
all examine networks created by experts (e.g. All Music Guide6) or via algo-
rithmic means (e.g. Last.fm7) as opposed to the artists themselves, as is seen in
Myspace and other similar networks. Networks of music listeners and of listen-
ers connected to artists have also been studied [Anglade et al., 2007; Lambiotte
and Ausloos, 2006].

3.2.1.4 Community Structure

Recently, as more data-heavy complex networks have been created across many
domains, there has been a significant amount of interest in algorithms for de-
tecting community structures in these networks. These algorithms are meant
to find dense subgraphs (communities) in a larger sparse graph. More formally,
the goal is to find a partition P = {C1, . . . , Cc} of the nodes in graph G such
that the proportion of edges inside Ck is high compared to the proportion of
edges between Ck and other partitions.

Because our network sample is moderately large, we restrict our analysis to
use more scalable community detection algorithms. We make use of the greedy
modularity optimization algorithm [Clauset et al., 2004] and the walktrap al-
gorithm [Pons and Latapy, 2005]. These algorithms are described in detail in
Section 3.3.3.

3.2.2 Content-Based Music Analysis

Many methods have been explored for content-based music analysis, attempting
to characterising a music signal by its timbre, harmony, rhythm, or structure.
One of the most widely used methods is the application of Mel-frequency cep-
stral coefficients to the modeling of timbre [Logan, 2000]. While a number of
other spectral features have been used with success [Casey et al., 2008b], when
used in combination with various statistical techniques MFCCs have been suc-
cessfully applied to music similarity and genre classification tasks [Berenzweig
et al., 2004; Logan and Salomon, 2001; Pampalk, 2006; Tzanetakis, 2007].

A simple and prevalent means to move from the high dimensional space of
MFCCs to single similarity measure is to calculate the mean and covariance of
each coefficient across an entire song and take the Euclidean distance between

6http://www.allmusic.com/
7http://www.lastfm.com/

74

http://www.allmusic.com/
http://www.lastfm.com/

these mean and covariance sets [Tzanetakis, 2007]. In the Music Information
Retrieval Evaluation eXchange (MIREX) [Downie, 2006, 2008] competitions
of both 20078 and 20099, this method, as employed by the Marsyas software
suite, was shown to do a reasonable job of approximating human judgements
of content-based similarity. A slightly more complex approach for comput-
ing timbre-based similarity between two songs or collections of songs creates
Gaussian Mixture Models (GMM) describing the MFCCs and comparing the
GMMs using a statistical distance measure. Often the Earth Mover’s Distance
(EMD) is the distance measure used for this purpose [Aucouturier and Pachet,
2004; Pampalk, 2006]. The EMD algorithm finds the minimum work required
to transform one distribution into another. While the EMD-GMM approach
models distance better than a simple Euclidean distance between averages of
feature values, the simpler method may be sufficient and is considerably less
computationally complex.

3.2.3 Measuring Independence Between Distributions

When comparing social and acoustic similarity in this work, in addition to ex-
amining linear correlation via Pearson correlation, we will also find the mutual
information contained across the social and acoustic similarity distributions.
Taken from information theory, mutual information is the amount of depen-
dence (usually measured in bits) that one distribution has on another [Steuer
et al., 2002, for example]. Given two distributionsX and Y , Mutual information
I(X;Y) can be defined as

I(X;Y) = H(X)−H(X|Y) (3.1)

where H(X) is the marginal entropy of the joint distributions X and Y and
H(X|Y) is the conditional entropy of X given Y .

All mutual information and related entropy calculations in this work are
calculated using pyentropy10, a python library for performing information the-
oretic analysis on data distributions [Ince et al., 2009].

3.3 Data Set Acquisition and Analysis

Now that we have a foundational understanding of complex networks, we need
to gather our data set. For reasons we discuss shortly it is not feasible to
capture the entire Myspace artist network, we therefore take a sample which

8see http://www.music-ir.org/mirex/2007/index.php/Audio_Music_Similarity_and_

Retrieval_Results entry by G. Tzanetakis
9see http://www.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_

Retrieval_Results entry by G. Tzanetakis
10http://code.google.com/p/pyentropy/

75

http://www.music-ir.org/mirex/2007/index.php/Audio_Music_Similarity_and_Retrieval_Results
http://www.music-ir.org/mirex/2007/index.php/Audio_Music_Similarity_and_Retrieval_Results
http://www.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_Retrieval_Results
http://www.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_Retrieval_Results
http://code.google.com/p/pyentropy/

we show to be representative. In this section, we report on our sampling of the
Myspace network, describing our method in Section 3.3.1 and properties of this
sample in Section 3.3.2. In order to examine the topography of our sample and
the distribution of connectivity within the sample, we describe our methods for
detecting community structure in Section 3.3.3.

3.3.1 Sampling Myspace

The Myspace social network presents a variety of challenges. Firstly, its size
prohibits analysing the graph in its entirety, even when considering only the
artist pages: therefore we sample a small yet sufficient portion of the network.
Secondly, the Myspace social network is filled with noisy data – plagued by
spammers and orphaned accounts: we limit the scope of our sampling in a way
that minimizes this noise. Finally, there currently is no published interface for
easily collecting the network data from Myspace. Our data is collected using
web crawling and HTML document scraping techniques11.

3.3.1.1 Artist Pages

It is important to note we are only concerned with a subset of the Myspace
social network – the Myspace artist network. Myspace artist pages are differ-
ent from standard Myspace pages in that they include a distinct audio player
application containing material uploaded by that user. Standard practice (and
a requirement of the End User License Agreement) is that this material has
been generated by this user. We therefore use the presence or absence of this
player to determine whether or not a given page is an artist page where, as
stated in Section 3.1, artist page is used to refer to the collection of social links
and audio material assumed to be generated by the same person or group of
people.

A Myspace page will include a top friends list. This is a hyperlinked list
of other Myspace accounts explicitly specified by the user and, unlike generic
friends, need not be a reciprocal relationship. The top friends list is limited in
length with a maximum length of 40 friends (the default length is 16 friends).
In constructing our sampled artist network, we use the top friends list to cre-
ate a set of directed edges between artists. Only top friends who also have
artist pages are added to the sampled network; standard Myspace pages are
ignored. We also ignore the remainder of the friends list (i.e. friends that
are not specified by the user as top friends), assuming these relationships are
not as relevant. Our sampling method is based on the assumption that artists
specified as top friends have some meaningful musical connection for the user

11Myspace scraping is done using tools from the MyPySpace project available at http:

//mypyspace.sorceforge.net

76

http://mypyspace.sorceforge.net
http://mypyspace.sorceforge.net

– whether through collaboration, stylistic similarity, friendship, or artistic in-
fluence. This artificially limits the outdegree of each node in such a way as to
only track social connections that have been selected by the artist to stand out,
beyond the self-promoting noise of their complete friend list. Further, it is also
a practical reduction as top friends can be scraped from the same single HTML
document as all the other artist metadata. 50 friends are displayed per page, so
gathering a full friend list would require N

50 pages to be scraped12, significantly
increasing the number of page requests required to sample the same number of
artists.

In addition to these social connections, we also gather metadata about
each artist. This metadata includes: the name of the artist, the number of page
views, and genre labels associated with the artists. The audio files associated
with each artist page in the sampled network are also collected for feature
extraction. Note that genre tags collected are at the level of artists, rather
than audio files; therefore all audio files associated with that artist will have
the same genre labels applied (see Section 3.4.3).

3.3.1.2 Snowball Sampling

There are several network sampling methods; however, for the networks like
the Myspace artist network, snowball sampling is the most appropriate method
[Ahn et al., 2007; Lee et al., 2006]. In this method, the sample begins with a
seed node (artist page), then the seed node’s neighbours (top friends), then the
neighbours’ neighbours, are added to the sample. This breadth-first sampling is
continued until the fraction of nodes in the sample reaches the target or sampling
ratio. Here, we randomly select a seed artist13 and collect all artist nodes within
6 edges to collect 15,478 nodes. If the size of the Myspace artist network is
around 7 million, then this is close to the 0.25% sampling ratio suggested for
accurate degree distribution estimation in sampled networks. Note that the
sampling ratio is not sufficient for estimating other topological metrics such
as the clustering coefficient and assortativity [Kwak et al., 2006]; such global
measures are not required for this work.

With snowball sampling there is a tendency to over-sample hubs because
they have many links and are typically picked up early in the breadth-first
sampling. This effect reduces the degree distribution exponent by introducing a
higher proportion of nodes with high connectivity than are seen in the complete
network, producing a heavier tail but preserving the overall power-law nature
of the network [Lee et al., 2006].

12Where N is the number of friends, typically 103 but in some cases of the order 107.
13The artist is Karna Zoo, Myspace url: http://www.myspace.com/index.cfm?

fuseaction=user.viewProfile&friendID=134901208

77

http://www.myspace.com/index.cfm?fuseaction=user.viewProfile&friendID=134901208
http://www.myspace.com/index.cfm?fuseaction=user.viewProfile&friendID=134901208

n m 〈k〉 l dmax

undirected 15478 91326 11.801 4.479 9
directed 15478 120487 15.569 6.426 16

Table 3.1: The network statistics for the Myspace artist network sample where
n is the number of nodes, m is the number of edges, 〈k〉 is the average degree,
l is the mean geodesic distance, and dmax is the diameter, as defined in Section
3.2.1.1.

3.3.2 Network Analysis of the Myspace Artist Network Sample

The Myspace artist network sample exhibits many of the network character-
istics common to social networks and other real-world networks. Some of the
network’s statistics are summarized in Table 3.1.

We see that the Myspace artist network is like many other social networks
in its “small world” characteristics – having a small diameter and geodesic dis-
tance. Additionally, in previous work, it has been shown that the Myspace
artist network is assortative with respect to genre labels – that is, artists pref-
erentially form connections with other artists that have the same genre labels
[Jacobson and Sandler, 2008].

Although the network is constructed as a directed network, for some of
our experiments we convert to an undirected network to simplify analysis. This
conversion is done to reduce complexity for analysis and to better examine the
reflexive properties that are present in the broader mutual friend connections
of the whole Myspace network. Each edge is considered bi-directional, that is
(i, j) ' (j, i), and if a reflexive pair of edges existed in the directed graph, only
one bi-directional edge exists in the undirected graph.

The degree distribution for this undirected reduction network is plotted
in Figure 3.2 on a log-log scale. It is common to find a power-law degree
distribution in social networks [Newman, 2003]. However, exponential degree
distributions have been reported previously in some types of music recommen-
dation networks [Cano et al., 2006]. This is especially true for networks with
imposed degree limits. For moderate degree values (35 < k < 200), our sample
shows a power-law distribution. For lower degree values, the distribution is
closer to exponential. This may be related to the fact that our network has
an out degree limit imposed by Myspace restricting the maximum number of
top friends (kout ≤ 40). The power-law fit also breaks down for high values of
k – most likely due to the limited scope of our sample. Similar “broad-scale”
degree distributions have been reported for citation networks and movie actor
networks [Amaral et al., 2000]. A more detailed analysis of this Myspace artist

78

Figure 3.2: The cumulative degree distributions for the Myspace artist network
sample. For moderate values of k, the distribution follows a power-law (indi-
cated by the dotted line), but for low and high values the decay is exponential.

network can be found in [Jacobson and Sandler, 2008].

3.3.3 Community Structure

We apply two community detection algorithms to our network sample – the
greedy optimization of modularity from Clauset et al. [2004] and the walktrap
algorithm as described by Pons and Latapy [2005]. Both of these algorithms
are reasonably efficient for networks of our size and both algorithms can be
easily adapted to incorporate audio-based similarity measures (see Jacobson
et al. [2008] and Section 3.4.3).

3.3.3.1 Greedy Modularity Optimization

Modularity is a network property that measures the appropriateness of a net-
work division with respect to network structure. Modularity can be defined in
several different ways [Costa et al., 2007]. In general, the modularity Q cap-
tures the relationship between the number of edges within communities and the
expected number of such edges. Let Aij ∈ 0, 1 be an element of the network’s
adjacency matrix and suppose the nodes are divided into communities such
that node i belongs to community Ci. We choose the definition of modularity

79

Q as the fraction of edges within communities minus the expected value of the
same quantity for a random network of the same size and degree distribution.
Then Q can be calculated as

Q =
1

2m

∑
ij

(
Ai,j −

didj
2m

)
δCiCj (3.2)

where the δCiCj function is 1 if Ci = Cj and 0 otherwise, m is the number
of edges in the graph, and di is the degree of node i – that is, the number of
edges incident on node i. The sum of the term didj

2m over all node pairs in a
community represents the expected fraction of edges within that community in
an equivalent random network where node degree values are preserved.

If we consider Q to be a benefit function we wish to maximize, we can then
use an agglomerative approach to detect communities – starting with a com-
munity for each node such that the number of partitions |P| = n and building
communities by amalgamation. The algorithm is greedy, finding the changes
in Q that would result from the merge of each pair of communities, choosing
the merge that results in the largest increase of Q, and then performing the
corresponding community merge. It can be proven that if no community merge
will increase Q the algorithm can be stopped because no further modularity
optimization is possible [Clauset et al., 2004]. Using efficient data structures
based on sparse matrices, this algorithm can be performed in time O(m log n).

3.3.3.2 Random Walk: Walktrap

The walktrap algorithm uses random walks on G to identify communities. Be-
cause communities are more densely connected, a random walk will tend to be
‘trapped’ inside a community – hence the name “walktrap”.

At each time step in the random walk, the walker is at a node and moves
to another node chosen randomly and uniformly from its neighbours. The
sequence of visited nodes is a Markov chain where the states are the nodes of
G. At each step the transition probability from node i to node j is Pij = Aij

di

which is an element of the transition matrix P for the random walk. We can
also write P = D−1A where D is the diagonal matrix of the degrees (∀i,Dii = di

and Dij = 0 where i 6= j).

The random walk process is driven by powers of P : the probability of going
from i to j in a random walk of length t is (P t)ij which we will denote simply
as P tij . All of the transition probabilities related to node i are contained in the
ith row of P t denoted as P ti•. We then define an inter-node distance measure

80

for a given value of t:

rij =

√√√√ n∑
k=1

(P tik − P tjk)2

dk
= ‖D−

1
2P ti• −D−

1
2P tj•‖ (3.3)

where ‖.‖ is the Euclidean norm of Rn. This distance can also be generalised by
averaging to a distance between communities: rCiCj or to a distance between a
community and a node: rCij

.

We then use this distance measure in our algorithm. Again, the algorithm
uses an agglomerative approach, beginning with one partition for each node
(|P| = n). We first compute the distances for all adjacent communities (or
nodes in the first step). At each step k, two communities are chosen based on
the minimisation of the mean σk of the squared distances between each node
and its community:

σ2
k =

1
n

∑
Ci∈Pk

∑
i∈Ci

r2iCi
(3.4)

Direct calculation of this quantity is known to be NP-hard [Pons and Latapy,
2005], so instead we calculate the variations ∆σk. Because the algorithm uses
a Euclidean distance, we can efficiently approximate these variations as

∆σ(C1, C2) =
1
n

|C1||C2|
|C1|+ |C2|

r2C1C2
(3.5)

The community merge that results in the lowest ∆σ is performed. We then
update our transition probability matrix

P t(C1∪C2)• =
|C1|P tC1• + |C2|P tC2•

|C1|+ |C2|
(3.6)

and repeat the process updating the values of r and ∆σ then performing the
next merge. After n− 1 steps, we get one partition that includes all the nodes
of the network Pn = {N}. The algorithm creates a sequence of partitions
(Pk)1≤k≤n. Finally, we use modularity to select the best partition of the net-
work, calculating QPk

for each partition and selecting the partition that maxi-
mizes modularity.

Because the value of t is generally low (we use t = 4, selected empirically),
this community detection algorithm is more scalable then greedy modularity
optimization. For most real-world networks, where the graph is sparse, this
algorithm runs in time O(n2 log n) [Pons and Latapy, 2005]. Note though,
the optimized greedy modularity algorithm scales significantly better for sparse
graphs than the walktrap algorithm – O(m log n) versus O(n2 log n) – and in

81

our implementation is faster by an order of magnitude on our sample graph.

3.3.4 Summary

In an effort to create an experimental dataset, the Myspace social network’s
artist network was sampled. The sample was taken via random entry and a
breadth-first walk. Basic analysis of this sample set shows it to conform to
norms of other studied social networks. Further an explanation of community
structural analysis techniques were laid out, from which to perform multimodal
analysis and measurement of the sample. With this understanding of the basic
properties of our data set, we can now go forward with experimentation using
hybrid distance techniques.

3.4 Hybrid Methods of Distance Analysis

To move towards well-formed uses of both social and acoustic notions of dis-
tance, a better understanding of the relationship between these two spaces is
required. We therefore conduct a series of experiments to analyse the effect
of combining social and content-based distance. Our first two experiments are
concerned with distance between pairs of nodes (both artists and songs) in our
graph; the third experiment looks into the affect that acoustic distance mea-
surements have in the detection of community structure. These experiments
are presented as follows.

1. The geodesic distance between all pairs of artists within the sample are
compared to the acoustic similarity of songs associated with each artist.

2. Maximum flow analysis is used to analyse the artist social space.

(a) This measure is compared to the same artist-based acoustic similar-
ity used in item 1.

(b) An additional song-to-song acoustic metric generated by the Marsyas
software suite is also used.

3. Community segmentation and structural analysis are explored as a further
means of understanding the interaction between these two spaces.

Some of this work requires a network of songs rather than artists (as we
sampled in Section 3.3.1). An unweighted graph between songs can be con-
structed by simply applying the artist connections to their associated songs;
weights can be assigned to these song-to-song edges individually, for example
based on acoustic dissimilarity between pairs of songs computed with the meth-
ods described in this section. These node relationships are illustrated in Figure
3.3.

82

Artist a Artist b
1.4

song
i

song
j

(a) The sampled artist to artist relationship

Artist a Artist b

song
k

song
l

song
i

song
j

song
o

song
p

song
m

song
n

1.2

2.5

1.4

1.3

1.0

2.1

0.9

1.1

(b) The expanded artist relationship, with songs as nodes. Note that
the connections of song k and song l have been omitted for clarity.

Figure 3.3: A comparison of sampled and song expanded means of representing
the relationship between artists.

83

MFCCs are extracted from each audio signal using a Hamming window on
8192 sample FFT windows with 4096 sample overlap. All MFCCs are created
with the fftExtract tool14. For each artist node a GMM is built from the con-
catenation of MFCC frames for all songs found on each artist’s Myspace page.
Generally artists have between 1 and 4 songs, although some artists have many
more. The mean number of songs is slightly more than 3.5 per artist. An n×n
matrix is populated with the earth mover’s distance λij between the GMMs
corresponding to each pair of artist nodes in the sample. As a second acoustic
dissimilarity measure, the software suite Marsyas15 is used in the exact configu-
ration that was used in the MIREX 2009 Audio Similarity and Retrieval16 task
to generate MFCC-based average value vectors per song and then to generate
an n×n Euclidean distance matrix of these songs. These distance matrices are
used to draw λ values to compare against the song expanded graph as detailed
above.

3.4.1 Geodesic Paths

The relation between audio signal dissimilarity and the geodesic path length
is first examined using a box and whisker plot. The plot is shown in Figure
3.4. These dissimilarities are grouped according to the geodesic distance in the
undirected network between the artist nodes i and j, dij . There appears to be
no clear correlation between these λ values and geodesic distance. The Pearson
product-moment correlation coefficient confirms this giving a ρ of −0.0016.
This should be viewed in the context of the number of pairwise relationships
used, implying it is stable, at least for the community of artists found via this
sample of the network. Further, it should be noted that our approach to audio-
based dissimilarity results in measures which are mostly orthogonal to network
structure [Fields et al., 2008a].

3.4.2 Maximum Flow

In our Myspace top friends graph, the maximum flow is measured on the di-
rected and undirected reduction of the unweighted graph from the source artist
node to the sink artist node. This extends the work of Fields et al. [2008b] by
applying an additional acoustic distance measure (that of the Marsyas entries
into MIREX) and examining all the results via means of mutual information.

3.4.2.1 Experiment

The maximum flow value is calculated, using the snowball sample entry point as
the fixed source against every other node in turn as a sink, yielding the number

14source code at http://omras2.doc.gold.ac.uk/software/fftextract/
15http://marsyas.info/
16http://music-ir.org/mirex/2009/results/abs/GTfinal.pdf

84

http://omras2.doc.gold.ac.uk/software/fftextract/
http://marsyas.info/
http://music-ir.org/mirex/2009/results/abs/GTfinal.pdf

Figure 3.4: The box and whisker plot showing the spread of pair-wise artist
dissimilarity grouped by geodesic distance as found on the artist graph. The
whiskers cover the second and seventh octiles beyond the inner quartiles covered
in each box.

85

of edges connecting each sink node to the entry point node at the narrowest
point of connection. The acoustic distances are then be compared to these
maximum flow values.

In order to better understand a result from analysis of our Myspace sample,
a baseline for comparison must be used. To that end, we examine random
permutations of the node locations. In order to preserve the overall topology
present in the network, we perform this randomization by shuffling the artist
label and associated music attached to a given node on the network. This is done
ten fold, creating a solid baseline to test the null hypothesis that the underlying
community structure is not responsible for any correlation between maximum
flow values and λij from either of the two acoustic dissimilarity measures.

3.4.2.2 Results

The results of this experiment show no simple relationship between the sampled
network and the randomized network. This can be seen in Table 3.2 and in
Figures 3.5 and 3.6. There is an increase in the median EMD for the less
well-connected (i.e. lower maximum-flow value) node pairs in the Myspace
sample graph, though this is not significant enough to indicate a correlation,
while the randomized permutations are near flat. Perhaps the easiest way
to examine the relationship between the sampled graph and randomized one
is through the deltas of each group’s median from the entire dataset median.
This data is shown in the second and fourth column in Table 3.2 and Figure 3.7.
Note especially both the EMD GMM acoustic distance and Marsyas generated
Euclidean distance have similar performance when viewed in this way. Further,
the Kruskal-Wallis one-way ANOVA results for both the sample graph and
averaged across the 10 fold permutations are shown in Table 3.3.

Additionally, we calculated the mutual information between the flow net-
work and both of the acoustic distance measures17. These can be seen, along
with the entropy of each set in Table 3.4. Here we can beyond simply looking at
an implied near independence. The mutual information between the maximum
flow values and either of two acoustic distance measure is a small fraction of
the entropy of either respective set of distances.

3.4.3 Using Audio in Community Detection

Both community detection algorithms described in Section 3.3.3 are based on
the adjacency matrix A of the graph. This allows us to easily extend these
algorithms to include audio-based similarity measures. We simply insert an
inter-node similarity value for each non-zero entry in A. We calculate these

17All mutual information and related entropy calculations in this work are calculated using
pyentropy, available at http://code.google.com/p/pyentropy/, a python library for per-
forming information theoretic analysis on data distributions [Ince et al., 2009].

86

http://code.google.com/p/pyentropy/

(a) The EMD distribution on the sampled graph

(b) The EMD distribution on the random permutations of the graph, main-
taining the original edge structure.

Figure 3.5: The box and whisker plots showing the distribution of EMD grouped
by maximum flow value between artists on the Myspace social graph and the
randomized permutations of the graph.

87

(a) The Euclidean distance distribution on the sampled graph

(b) The Euclidean distance distribution on the random permutations of the
graph, maintaining the original edge structure.

Figure 3.6: The box and whisker plots showing the distribution of Euclidean
distance, grouped by maximum-flow value between artists on the Myspace social
graph and the randomized permutations of the graph.

88

0 2 4 6 8 10
Maximum Flow Value

2

1

0

1

2

3

4

5

6

D
e
lt

a
 F

ro
m

 O
v
e
ra

ll
M

e
d
ia

n

sampled graph, EMD
randomized graph, EMD
sampled graph, Euclidean distance
randomized graph, Euclidean distance

Figure 3.7: The deltas from the global median for each maximum flow value
group of acoustic distance values, from the sampled graph and the randomized
graph.

similarity values using both the earth-mover’s distance and Marsyas’ audio-
based analysis methods described in Section 3.4. Dissimilarity values from these
methods must be converted to similarity values to be applied to the community
detection algorithms. We do this by taking the reciprocal of each dissimilarity:

Aij =

{
λ−1
ij if nodes i and j are connected
0 otherwise

(3.7)

3.4.3.1 Genre Entropy

Now that we have several methods for detecting community structures in our
network, we need a means of evaluating the relevance of these structures in the
context of music. Traditionally, music and music artists are classified in terms
of genre. If the structure of the Myspace artist network is relevant to music, we
would expect the communities identified within the network to be correlated
with musical genres. That is, communities should contain nodes with a more
homogeneous set of genre associations than the network as a whole.

In our sampling of the Myspace network (described in Section 3.3.1 above),
we collected genre tags that are associated with each artist. In order to measure

89

the diversity of each community with respect to genre we use a variant of
Shannon entropy we call genre entropy S. This approach is similar to that of
Lambiotte and Ausloos [2006]. For a given community Ck with the set of L(Ck)
genres, drawn from the set L total genres, we calculate genre entropy as:

SCk
= −

∑
γ∈L(Ck)

Pγ|L(Ck) logPγ|L(Ck) (3.8)

where Pγ|L(Ck) is the probability of finding genre tag γ in community Ck. As
the diversity of genre tags in a community Ck increases, the genre entropy
SCk

increases. As the genre tags become more homogeneous, the value of SCk

decreases. If community Ck is described entirely by one genre tag then SCk
= 0.

We can calculate an overall genre entropy SG by including the entire network
sample. In this way, we can evaluate each community identified by comparing
SCk

to SG. If the community structures in the network are related to musical
genre, we would expect the communities to contain more homogeneous mixtures
of genre tags. That is, usually, we would expect SCk

≤ SG. However, as
community size decreases the genre entropy will tend to decrease because fewer
tags are available. To account for this, we create a random partitioning of the
graph that results in the same number of communities with the same number
of nodes in each community and calculate the corresponding genre entropies
Srand to provide a baseline.

If an artist specified no genre tags, this node is ignored and makes no
contribution to the genre entropy score. In our data set, 2.6% of artists specified
no genre tags.

3.4.3.2 Results

The results of the various community detection algorithms are summarized in
Figure 3.8 and Table 3.5. When the genre entropies are averaged across all
the detected communities, we see that for every community detection method
the average genre entropy is lower than SG as well as lower than the average
genre entropy for a random partition of the graph into an equal number of
communities. This is strong evidence that the community structure of the
network is related to musical genre.

It should be noted that even a very simple examination of the genre dis-
tributions for the entire network sample suggests a network structure that is
closely related to musical genre. Of all the genre associations collected for our
data set, 50.3% of the tags were either “Hip-Hop” or “Rap” while 11.4% of tags
were “R&B”. Smaller informal network samples, independent of our main data
set, were also dominated by a handful of similar genre tags (i.e. “Alternative”,

90

fg fg+a wt wt+a
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
C

i

(a) Audio weights are Earth Mover’s Distance

fg fg+a wt wt+a
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
C

i

(b) Audio weights are Euclidean distance generated by
Marsyas

Figure 3.8: Box and whisker plots showing the spread of community genre
entropies for each graph partition method where gm is greedy modularity, gm+a
is greedy modularity with audio weights, wt is walktrap, and wt+a is walktrap
with audio weights. The horizontal line represents the genre entropy of the
entire sample. The circles represent the average value of genre entropy for a
random partition of the network into an equivalent number of communities. (a)
uses the Earth Mover’s Distance for audio weight, (b) uses Euclidean distance
from Marsyas.

91

“Indie”, “Punk”). In context, this suggests our sample was essentially “stuck”
in a community of Myspace artists associated with these particular genre incli-
nations. However, it is possible that these genre distributions are indicative of
the entire Myspace artist network. Regardless, given that the genre entropy of
our entire set is so low to begin with it is an encouraging result that we could
efficiently identify communities of artists with even lower genre entropies.

Without audio-based similarity weighting, the fast-greedy modularity algo-
rithm (fg) produces communities with significantly higher genre entropy when
compared as a whole distibution to the communities produced via the walktrap
algorithm (wt). However the walktrap algorithm results in almost five times
as many communities, so we would expect to result in a lower genre entropies
because of smaller community size. Also note that as discussed in Section 3.3.3
the optimized fast-greedy modularity algorithm is considerably faster than the
walktrap algorithm.

With audio-based similarity weighting, we see mixed results. Applying au-
dio weights to the fast-greedy modularity algorithm (fg+a) actually increased
genre entropies but the differences between fg and fg+a genre entropy distri-
butions are not statistically significant. Audio-based weighting applied to the
walktrap algorithm (wt+a) results in a statistically significant decrease in genre
entropies compared to the un-weighted walktrap algorithm (p = 4.2 · 10−4).
These relationships hold true when considering audio-based similarity from ei-
ther of the two measures used throughout the chapter.

3.4.4 Summary

In an effort to better understand and leverage both social connectivity and
content-based dissimilarity, we conducted a number of experiments, in two cat-
egories: pairwise distance and community segmentation. Our pairwise distance
work showed little in terms of a linear correlation, and when examining the
mutual information of the two distance distributions it becomes clear that the
two encode largely independent spaces, with a very small information content
overlap. When looking into community segmentation, we used genre entropy
to see if using acoustic distance would improve the quality of segmentation.
This addition of the content-based distance made only a slight difference to the
segmentation; however, it is clear that the social structure tightly corresponds
to the self-applied genre labels.

3.5 Discussion

We have presented an analysis of the community structures found in a sample
of the Myspace artist network. We have applied two efficient algorithms to the
task of partitioning the Myspace artist network sample into communities and we

92

have shown how to include audio-based similarity measures in the community
detection process. We have evaluated our results in terms of genre entropy –
a measure of genre tag distributions – and shown the community structures
in the Myspace artist network are related to musical genre. The communities
detected have lower entropy over genre labels than a graph with randomly
permuted labels.

We compared the social space of the Myspace sample with content-based
acoustic space in two ways in Section 3.4. First the geodesic distances of pairs
of artists were compared to the acoustic distance between these pairs of artists.
Then maximum flow between pairs of artists was compared to both the acoustic
distance between the artists and amongst the artists’ songs. While not perfectly
orthogonal, the artist social graph and the acoustic dissimilarity matrix clearly
encode different relational aspects between artists. This can be clearly seen in
the small amount of mutual information shared across the sets of distances.
The implication is that using both of these spaces in applications driven by
similarity measures will result in much higher entropy in the data available to
such an application. This suggests that a recommendation or discovery system
that can use both domains well has the potential to perform much better than
a similar system that relies on only one domain in isolation.

To understand more completely the contributions of the chapter, we revisit
the questions posed at the beginning; what have we learned?

Given that this music is published within a relational space, how

can we best use all of the available information to discover new

music?

Broadly speaking, our work presented two potential ways to combine the dis-
parate domains of social and content-based space. By weighting the social graph
with a measure of acoustic distance, various techniques from complex analysis
can be applied. Here we focused on pathfinding and community segmentation.
Given the breadth of available techniques from complex networks, we cannot
yet say if these works are best ; however, pathfinding is a natural fit to the
construction of playlists and previous work has shown playlists to be excellent
vehicles for music discovery [Cunningham et al., 2006; Lamere and Eck, 2007].

Can both social metadata and content-based comparisons be ex-

ploited to improve discovery of new material?

While this is similar to the previous question, when looked at this way we
can be considerably more definitive. When looking at the entirety of our ex-
perimentation, especially the mutual information across distributions seen in
Section 3.4.2.2, the answer to this question is a clear yes. While a complete

93

end-user oriented system remains to be developed, this work shows that such a
system would be better served drawn from social and acoustic driven notions
of distance and similarity.

Can this crowd-sourced tangle of social-networking ties provide

insights into the dynamics of popular music?

On this point a clear conclusion from this work is that the expected linear
correlation between social and acoustic distance is not present. So does an
artist sound like their friends? While perhaps not what one would first guess,
it appears the answer is that while an artist may sound like (i.e. similar to)
their friends, they don’t sound significantly dissimilar to artists that are not
(i.e. artists which have a high social distance are only slightly further away in
acoustic terms than those with a low social distance).

Does the structure of a network of artists have any relevance to

music-related studies such as music recommendation or musicol-

ogy?

This work lays out the parts with which an engaging recommender system could
be built or musicological study conducted. This compels further study. As the
Myspace artist network is of interest to other researchers, we have converted
our graph data to a more structured format. We have created a Web service18

that describes any Myspace page in a machine-readable Semantic Web format.
Using FOAF19 and the Music Ontology20[Raimond et al., 2007], the service
models a Myspace page in RDF and serializes it as XML RDF. This will allow
future applications to easily make use of Myspace network data (e.g. for music
recommendation).

While it is unclear how best to use all the available information from the
wide range of artists and musicians, what this work makes clear is that there
are advantages to complex multi-domain notions of similarity in music. By
using both acoustic and social data recommender systems have more avenues to
pursue to present new material to users in a transparent way. Whether either
of these spaces can provide insight into the other remains an open question,
though our work tend to show the likely predictability of one space from the
other is low. In spite or perhaps because of this separation, and given the sheer
quantity of data available on the web, it seems inevitable that these domains will
be used in tandem in future music recommendation and musicological study.

18available at http://dbtune.org/myspace
19http://www.foaf-project.org/
20http://musicontology.com/

94

http://dbtune.org/myspace
http://www.foaf-project.org/
http://musicontology.com/

3.6 Engineering Playlist-Based Applications

In an effort to create domain-specific recommender and discovery systems, we
outline two ways to apply this work to end-listener applications. The playlist
is an ideal means for this [Flexer et al., 2008; Lamere and Eck, 2007] and
such applications could then be evaluated using recommender system standard
practice [Adomavicius and Tuzhilin, 2005].

3.6.1 The Max Flow Playlist

To build playlists using both acoustic and social-network data, the Earth
Mover’s Distance is used between each pair of neighbours as weights on the
Myspace sample network. Two artists are then selected, a starting artist as the
source node and a final artist as the sink node. One or more paths are then
found through the graph via the maximum flow value, generating the list and
order of artists for the playlist. The song used for each artist is the most popu-
lar at the time of the page scrape. In this way playlists are constructed that are
both influenced by timbre similarity and bound by social context, regardless
of any relationship found between these two spaces found via the work dis-
cussed in Section 3.4. Playlists generated using this technique were informally
auditioned, and were found to be reasonable on that basis.

There is clearly potential in the idea of the maximum flow playlist. Based
on a small and informal listening test, using either audio similarity measure
as a weight the results appear to be quite good, at least from a qualitative
perspective. The imposed constraint of the social network alleviates to some
extent shortcomings of a playlist built purely through the analysis of acoustic
similarity by moving more toward the balance between uniformly acoustically-
similar works and completely random movement.

3.6.2 Steerable Optimized Self-Organizing Radio

Using the song-centric graph the following system is in development as a means
of deployment and testing. This system is designed to play a continuous stream
of songs via an Internet radio stream. The playback system begins with an
initial seed song and destination song, then constructs a playlist. While this
playlist is being broadcast, anyone tuning into the broadcast is able to vote via
a web-based application on the next song to serve as the destination. In order
to produce a usable output the vote system presents a list of nominees, each
selected as a representative track from various communities as segregated via
means discussed in Section 3.4.3.

Once the current destination song begins to broadcast, the voting for the
next cycle ceases. This destination song is considered the seed song for the next
cycle and the song with the most votes becomes the new destination, then the

95

next playlist will be calculated and its members broadcast. This process will
continue for the duration of the broadcast. Once this automatic playlist creation
system is allowed to run for a sufficient amount of time, a great deal of user
data will be recorded. This would include direct preference feedback, voting
behavior, average length of time continuously listened and whether listeners (or
at least IP addresses) return. This provides a built-in means of human listener
evaluation for these playlists.

We explore this fully automatic radio system further in the next chapter.

96

E
ar

th
M

ov
er

s
D

is
ta

nc
e

M
ar

sy
as

ge
ne

ra
te

d
E

uc
lid

ea
n

D
is

ta
nc

e

M
ax

F
lo

w
m

ed
ia

n
de

vi
at

io
n

ra
nd

om
iz

ed
de

vi
at

io
n

m
ed

ia
n

de
vi

at
io

n
ra

nd
om

iz
ed

de
vi

at
io

n

1
40
.8

0
1.

26
39
.1

0
−

0.
43

7.
25

6
0.

57
1

6.
71

0
0.

02
5

2
45
.3

0
5.

76
38
.3

4
−

1.
19

7.
01

6
0.

33
1

6.
66

8
−

0.
01

6
3

38
.1

8
−

1.
35

38
.8

7
−

0.
66

6.
93

2
0.

24
7

6.
76

4
0.

07
9

4
38
.2

1
−

1.
32

38
.6

4
−

0.
89

6.
87

2
0.

18
7

6.
70

7
0.

02
2

5
40
.0

0
0.

47
39
.1

1
−

0.
42

6.
67

3
−

0.
01

1
6.

69
5

0.
01

0
6

41
.7

7
2.

25
39
.0

2
−

0.
51

6.
89

6
0.

21
1

6.
76

1
0.

07
6

7
39
.9

4
0.

41
39
.2

4
−

0.
29

6.
56

8
−

0.
11

6
6.

71
4

0.
02

9
8

39
.3

8
−

0.
15

38
.7

6
−

0.
77

6.
59

7
−

0.
08

7
6.

66
0

−
0.

02
3

9
38
.5

0
−

1.
03

38
.8

7
−

0.
66

6.
27

0
−

0.
41

4
6.

71
7

0.
03

2
10

39
.0

7
−

0.
46

40
.8

5
1.

32
6.

25
3

−
0.

43
1

6.
62

3
−

0.
06

1

T
ab

le
3.

2:
N

od
e

pa
ir

s
of

m
ed

ia
n

ac
ou

st
ic

di
st

an
ce

va
lu

es
gr

ou
pe

d
by

ac
tu

al
m

in
im

um
cu

t
va

lu
es

an
d

ra
nd

om
iz

ed
m

in
im

um
cu

t
va

lu
es

,
sh

ow
n

w
it

h
de

vi
at

io
ns

fr
om

th
e

gl
ob

al
m

ed
ia

ns
of

39
.5

3
fo

r
E

M
D

an
d

6.
68

48
fo

r
E

uc
lid

ea
n

di
st

an
ce

.
E

M
D

w
ei

gh
ts

ar
e

on
th

e
le

ft
an

d
E

uc
lid

ea
n

di
st

an
ce

s
as

ge
ne

ra
te

d
by

M
ar

sy
as

ar
e

on
th

e
ri

gh
t.

97

H-value P-value

From sample 12.46 0.19
Random permutations 9.11 0.43

Table 3.3: The Kruskal-Wallis one-way ANOVA test results of EMD against
maximum flow for both the sampled graph and its random permutations. The
H-values are drawn from a chi-square distribution with 10 degrees of freedom.

audio distance type H(X) H(X|Y) H(Y) I(X;Y)

Euclidean distance 3.100 3.00 8.65 0.100
GMM/EMD 3.098 2.723 8.65 0.375

Table 3.4: Entropy values for the acoustic distances and maximum flow values.
X is the set of audio distance measurements, Y is the set of maximum flow
values.

algorithm c 〈SC〉 〈Srand〉 Q

none 1 1.16 - -
fg 42 0.81 1.06 0.61
fg+a (gmm) 33 0.81 1.06 0.64
fg+a (mars) 35 0.74 1.06 0.63
wt 195 0.42 1.08 0.61
wt+a (gmm) 271 0.42 1.06 0.62
wt+a (mars) 269 0.42 1.06 0.62

Table 3.5: Results of the community detection algorithms where c is the number
of communities detected, 〈SC〉 is the average genre entropy for all communities,
〈Srand〉 is the average genre entropy for a random partition of the network into
an equal number of communities, and Q is the modularity for the given partition
as defined in Eq. 3.2.

98

Chapter 4

Steerable Optimizing Self-Organized

Radio

“The anonymous programmers who write the algorithms that con-
trol the series of songs in these streaming services may end up having
a huge effect on the way that people think of musical narrative –
what follows what, and who sounds best with whom. Sometimes we
will be the d.j.s, and sometimes the machines will be, and we may
be surprised by which we prefer”
–Sasha Frere-Jones, You, the D.J. – Online music moves to the
cloud, The New Yorker, 14 June 2010

We detail a fully-automatic, interactive radio system, designed to put the
lessons of the analysis presented in Chapter 3 into practice, within an interac-
tive, user-centric, group-playback application. We first expand on and specify
ways to improve playlist generation, looking at ways to elicit better queries from
a user and consider the implications of novelty curves and expectation. From
there the practicalities of the Web as a development platform are discussed,
especially as it relates to our application. A detailed view of our interactive
model is presented, followed by a complete specification of the deployed system.
The chapter concludes with a discussion of evaluation, both those performed
and proposed extensions. The system this chapter describes is live and pub-
licly accessible via http://radio.benfields.net. All source code is published
under an open source license and available1.

4.1 Generating Better Playlists

Before discussing the particulars of our system, we will first formalise ap-
proaches to generate playlists that better meet the needs and requirements
of the listener. In this way we will develop a user-centric specification for any

1source available at https://github.com/gearmonkey/sosoradio

http://radio.benfields.net
https://github.com/gearmonkey/sosoradio

playlist-generation system, where the algorithm design and parameterisation is
informed by an understanding of the requirements of listeners. For this dis-
cussion we will consider playlist generators as information retrieval systems.
From this framing, input given to a playlist generator is considered a query ;
similarly, generated playlists are considered retrieved results, and we consider
their relevance to the query.

4.1.1 More Specific Queries

To provide playlists which are more likely to satisfy listeners, systems must be
designed to elicit queries that are as specific as practical from users with which
to build playlists. As discussed in Chapter 2.8, the majority of existing systems
provide an interface to the playlist generator that does not elicit a sufficient
amount of specificity.

The most common form this deficiency takes is playlist generation by seed
song [Aucouturier and Pachet, 2002; Knees et al., 2006; Logan, 2002]. Here a
single song is the only means used to specify the desired playlist. The particulars
of each of these approaches is discussed in more detail in Section 2.8.2, but the
lack of specificity that effects all of them can be considered as follows. A playlist
is a sequence of songs. If those songs, along with others, are projected into a
space, a playlist in that space can be considered as an approximation of a vector
through that space. A single point (song) is not enough information to specify
any arbitrary vector. When a playlist generation system only uses single song
queries with no further input (implicit or explicit), the vector through space
has no specified direction, so a playlist of songs within a radius or heading in
a random direction is the only method that can be used, though it may not be
what would best meet the user’s needs.

As the qualitative results show in Flexer et al. [2008], playlist results are
vastly improved by the additional information provided by the a second song
being included in a query system. Although this is not the only method of
further query specification acknowledged in literature (see Section 2.8.2), the
critical point is that any viable novel system must have a means for the user to
specify not only a starting position but the trajectory as well.

4.1.2 Novelty Curves and Expectation

Presenting any ordered list of stimuli to a user results in changing perceptions
of novelty and expectation as the ordered list is presented. In order to make
playlists that better meet a users needs, if relying on content-based features, this
information of a novelty curve must be encoded somewhere else. A statistical
model-based system similar to that described in Platt et al. [2002] could be
extended to work with extracted audio features rather than textual features.

100

Another approach is to encode the playlists from Ellingham [2007] and Lynskey
[2008] and employ these as training data for a heuristic system. The goal of
this approach is to apply the dynamic shape of aggregate expert playlists onto
new material, though is is unclear whether it is effective without a great deal
of human intervention.

When using a dataset with an underlying graph that follows a power-law
distribution of linking, novelty can be met through a selection of items that are
spread across the degree distribution. Novelty and interest can also be fostered
by traversing multiple communities (areas of high linking) in a single playlist.
This novelty arises because in order to go from one community to another via
a connected path, a constructed playlist must cross nodes with lower linking
serving the connection between communities. This leads to a forced variance
in degree connectivity, a proxy for novelty, across a playlist.

4.2 The Web as a Platform

Developing software traditionally entails choosing an operating system to tar-
get for deployment. As software development tools have grown and matured,
it has become easier to create applications that can run on multiple operating
systems (OS). There exist a variety of ways to accomplish cross-platform target-
ing including avoiding OS-specific libraries (Cocoa in Mac OS X for example),
developing for a common virtual machine (Java and the Java Virtual Machine
or JVM) or the use of interpreted rather than compiled languages (e.g. Python,
Ruby or Max/MSP).

The SoSoRadio system as detailed in this chapter requires a persistent in-
ternet connection for a user to stream music as it is selected by the system
for playback and also to submit requests back to the service as will be dis-
cussed in Section 4.3. Given this central requirement, the system is developed
using the Web as a platform and by doing so achieve operating system indepen-
dence by shifting the burden of interoperability to the Web Browser [Taivalsaari
et al., 2008]. This approach is becoming more widespread, covering everything
from social networking environments such as Facebook2 to the more traditional
business applications available through Google Docs3. This treatment, coupled
with the use of a collection of standards4 allows for applications that conform to
users expectations and makes for an effective application environment [Fielding,

2http://facebook.com
3http://docs.google.com
4The Web as it is commonly understood is the sum of many commonly agreed upon (or

standardized) ways of viewing and transmitting data along with the data and services that
meet these standards. These standards are overseen by the World Wide Web Consortium
(W3C)(http://www.w3.org/). The core standards that make up the web include the Hyper-
Text Markup Language (HTML), Cascading Style Sheets (CSS), and Javascript.

101

http://facebook.com
http://docs.google.com
http://www.w3.org/

2000].

4.3 Interactivity Model

The inspiration for the interactive model employed in SoSoRadio comes from
terrestrial radio music programs; in particular, request shows. In these shows,
listeners would contact the show while it was on the air with a song they
wanted to be included in the upcoming programming (commonly by voice call,
historically by handwritten letter, however more recently the contact methods
have broadened to include email and text message). While some of these shows
would have the entire make-up of a program dictated by this listener request
process, the most common format entails a mix of requested songs from the
listeners and music selected by the presenter. In the ideal, this non-requested
material is selected and ordered to construct coherent transitions from one
user request to another. Thus the song selection of the DJ (or music director or
whoever is ultimately programming the radio show) is being steered by audience
requests while at the same time acting as a curator of those requests through
ordering and selection of other material.

4.3.1 Input via Periodic Request

A request given the context of what is currently being listened to provides
a system with a more precise input mechanism than the context-free single-
seed-song playlists of Aucouturier and Pachet [2002]; Knees et al. [2006]; Logan
[2002]. While listening to the system’s content, a listener is given the ability to
request a song. These two things together, the context of currently – or about to
be – played music and the request song, form the playlist query coming from the
listener. In this way a more specific query is presented to the playlist-generating
system, analogous to start-and-end-songs-based systems as described in Section
2.8.2 such as Flexer et al. [2008].

Taking a cue from request radio shows, the input mechanism for playlist
generation is constructed in such a way to allow for variable levels of inter-
action from the audience. This variability occurs in two directions, from the
system’s perspective and from the perspective of individual listeners. The sys-
tem provides for a variable level of request interactivity by dictating how often
a request is played and how often content is selected to bridge these gaps. This
provides an upper bound on the frequency of request interactivity. The lower
bound of request interactivity comes from the individual listeners. A listener
may decline to provide a request for any given request period. In this case that
listener’s request does not factor into the aggregation process. In the event that
no listener provides a request for a given period, one is selected at random from
the nominee list as described in the following Section.

102

The request side of the interactive model can be seen in Figure 4.1.

requests
are

aggregated
listeners

vote for the
next

request

Playlist and
nomination
generator

next
request

new
nominees
created

Figure 4.1: The portion of SoSoRadio’s interactivity model for generating nom-
inees and eliciting requests

4.3.2 Narrowing Choice

Choice overload is defined in psychological literature as the phenomenon of the
difficulty in evaluating and selecting from a number of object increasing expo-
nentially as the number of objects increases. This effect has been shown to be
observable in recommender systems, classically by presenting many undifferen-
tiated objects and more recently by showing many (more than 50) objects with
a high rating as recommendations to the user [Bollen et al., 2010]. To mitigate
the negative effects of choice overload, the SoSoRadio system presents a selec-
tion of nominees, a subset of tracks from which a listener can select a request
track for the period. These nominees are automatically selected to maximise
spread across the artist social communities within the collection of tracks avail-
able to the system. Further they should be representative of the communities
from which they are drawn, as each nominee stands in for all the other tracks
in a community.

4.3.3 Eliciting Feedback

Besides listener interaction via periodic requests from nominated tracks, an ad-
ditional means of feedback is available within the system’s interactive model.
This feedback is the ability to rate a currently-playing track from one to five,
with five being best, while the track is playing. While rating currently-playing
music has been used in many existing music recommendation systems, SoSoRa-
dio differs in its interpretation of what exactly is being rated. While the listener
is asked to give a rating for the current song playing, this rating is applied to
the bi-gram of the currently playing song and the song that was played directly
before it; equivalently this can be considered as rating the edge connecting two

103

nodes in a graph, where the nodes are tracks as is the case in the graph de-
scribed in Section 3.4. This is done to ensure that the context this rating occurs
in is not lost. By recording the ratings in this manner, traditional song ratings
are available, but so too are more subtle (though sparse) contextual rating uses.
For example, this contextual data would make it is possible to examine how a
song effects the subsequent expected value of rating from a given user (using
emphe.g. value-added analysis Bryk and Weisberg [1976]).

4.4 The System

The SoSoRado system combines the hybrid similarity space described in Chap-
ter 3 with the interactivity model detailed in the previous section, creating
a complete automatic music delivery system that responds to its users while
curating the underlying musical data in a way that users find compelling.

4.4.1 Overview

The system is composed of a number of disparate processes, communicating via
a number of means. Its prototypical deployment spreads these processes over
four physical computers, not including the client-side processes. The client-
side processes can run on any machine with access to the Web and a modern
browser. An overview of the complete system is shown in Figure 4.2.

4.4.2 User Interface

When arriving at the website, a user is presented with a screen like the one seen
in Figure 4.3. As the content is dynamically generated based on the currently
playing song and nominees, the particular images will vary, but the layout
remains the same. In this initial landing page the user is presented with three
distinct actionable items: the user can open the stream and listen to the audio
content; view the current playlist, see the current track and rate it; and examine
the nominees for the current request cycle, including external links for further
information, and vote for a nominee.

The left half of the interface shows the current playlist with earlier songs
at the top of the list and later songs further toward the bottom of the screen.
Within this playlist display, the currently playing song is shown larger than
the other songs in the playlist along with an artist picture. There is a drop
down selector allowing for the rating of the current song from 1 to 5. Figure
4.4 shows an example screen capture after a rating (in this case a rating of 5 is
given) has been indicated by the user. After successfully recording a rating the
server sends back the rating, which gets displayed to the user underneath the
rating selector, as a means of verification.

The right portion of the screen displays the nominated tracks for the cur-

104

cage.doc.gold.ac.uk

end user

weighted
song graph

voter and rating
DB - psql

(dunstable)

Generate current playlist
and update voter DB

push current
song to icecast

server

icecast2 server
(doc.gold.ac.uk)

media on datastore
(rvw.doc.gold.ac.uk:/Datastore)

Render webpage with
current nominees and

playlist

current mp3

web front-end
server

(doc.gold.ac.uk)

current info DB -
redis

(cage)

Goldsmiths sandbox

The Internet

retrieve songs

load graph

push selected playlist/
pull votes

nominees/
possible playlists

record votes
and ratings /

fetch nominees
and playlist

upload stream

download stream

current playlist and
nominees as json

push ratings data
and nominee selection

web front as html+css and jQuery

Figure 4.2: A system-wide block diagram of SoSoRadio

105

Figure 4.3: Initial landing page for radio user page

Figure 4.4: After the user has rated the current song

106

Figure 4.5: Screenshot showing the hover behavior of of the nominees

rent request period and related data including artist and song name, along with
an out link to the source social network. Each of the nominated tracks is repre-
sented by an icon, automatically created using the center 100×100 pixel square
from the artist’s profile picture (gathered from the source social network). By
default only this icon is seen for each of the nominated tracks, as is seen in
the initial screen capture shown in Figure 4.3. When the cursor hovers, or is
brought over the icon without clicking, the icon is grayed out with the track’s
text metadata shown (linked to the source social network page) along with a
button to vote for the nominated track. This can be seen in Figure 4.5.

Once a user has selected a nominated track the display changes. When the
user is hovering the cursor over any of the nominated track icons, the interface
appears as it did before a track was selected. However, when the cursor is
hovering elsewhere on the screen, the nominee tracks become grayed out, with
the current percentile of the vote each nominee has received overlaid on the
nominee’s icon. An example can be seen in Figure 4.6

In this state, users can listen to the remainder of the current session and
also follow to see how their selected nominee is fairing in the voting process.
If users want to change their vote they can do so at any time until just before
the end of the session when the voting is stopped to generate the next session’s
playlist.

107

Figure 4.6: Once a user has voted for a nominee the nominees will be greyed,
showing the current percentiles of votes for each nominee

4.4.3 Core System

The core system can be considered in three parts: the streaming service itself,
the playlist generator and the nomination generator. Each of these systems
depends on a weighted-directed-graph representation of the songs available to
the system. The prototype live instance of the system uses the songs-as-nodes
graph described in Section 3.4, with the weights set as the song-to-song simi-
larity found using Marsyas as described in the same section.

The streaming service is built using icecast libshout5 via the Python wrap-
per shout-python. Icecast is an open source streaming audio toolkit that pro-
vides stream compatibility with the shoutcast6 software (available under a com-
mercial license) that predates it.

The playlist generator finds the shortest path through nodes that have not
been visited in the past session between the end of the current playlist and the
next request track. A session is a look back window containing everything that
has been played in a fixed previous length of time. In the live prototype, this
is 3 hours. The playlist generator also performs the vote aggregation to go find
the request song. In the existing system, this aggregation is a simple majority
tally mechanism. Once the next request track is determined, the shortest path

5http://www.icecast.org/
6http://www.shoutcast.com/

108

http://www.icecast.org/
http://www.shoutcast.com/

is found between the two song as detailed in Section 3.2. Once the playlist is
calculated it is pushed to the common database to allow the streaming service
to play each track in order and the interface layer for display.

Finally, the nomination generator determines the songs which will be made
available to listeners to request for the upcoming request period. The nomi-
nation process first breaks the graph of songs into communities as described
in Section 3.3.3, using the audio weights applied to edges. For each commu-
nity, excluding the community containing the last song of the current playlist,
a representative song is found by the following method:

1. The duration of the potential playlist formed between the last song of
the current playlist and a potential nominee must fall within the period
range, set a priori. In the live prototype this is 30± 5 minutes.

2. The pagerank [Langville et al., 2008] of each song in the community is then
calculated taking the community as a discrete subgraph for the purpose
of the pagerank calculation. In this way pagerank serves to describe the
inter-community relevance of each track.

3. A song from the top 85th to 95th percentile is selected as the representative
nominee track for the community.

At the end of this process each community will have selected a single represen-
tative track, with the exception of communities where no tracks can be found
that meet the first requirement. From this pool a random subset of 9 is selected
and recorded into the database for the interface to access. Note that the size
of the subset is arbitrary and can be tuned to optimize the interactive model.

4.5 Playlist Analysis and Evaluation

When evaluating playlists it is important to consider what evaluation is for.
In the SoSoRadio system, we seek playlists that balance between popular and
unknown material, as a stand in for novelty-curve analysis, and playlists should
be enjoyable, by way of generating positive ratings. The SoSoRadio system
has been running since May 4th 2010 and the following analysis is based on a
portion of the playlists that have been created from then until November 2010.
Some basic statistics for the playlists being used for evaluation can be seen in
Table 4.1.

4.5.1 Genre Labels

Myspace artist pages are self-labelled with between zero and three genre labels
from a list of options provided by Myspace. These genre labels are used to assess
the variance in style seen in the playlists produced by SoSoRadio. Figure 4.7

109

Number of playlists 857
Avg. number of songs 6.18
Most prevalent genre label ‘hip-hop’

Table 4.1: Basic statistics for the evaluation playlists from SoSoRadio

shows a histogram of the number of genre labels used to describe each playlist’s
artists. While the most common number of labels used to describe all the artists
in a playlist is three (the maximum number of labels used to describe a single
artist), the majority of playlists use at most six genre labels showing a genre
coherence.

Figure 4.7: Histogram of the number of genre labels occurring in SoSoRadio
produced playlists

In addition to considering the coherence of the entire playlist, it is also
important to consider the similarity of neighbouring songs in a playlist. While
it may be desirable to have some variety in a playlist, this must balance with
small changes between neighbouring songs in the majority of cases. This can
be measured by finding the change in genre labels from one song’s artist to
another that neighbours it in playback order, extending the measure used in
Knees et al. [2006] to consider multiple genre labels per song. We call this
measure smoothness. Given two songs i and j, with genre label sets I and J ,

110

the smoothness between them, Sij , is defined as

Sij =
|I ∩ J |

max (|I|, |J |)
(4.1)

|I| and |J | are the number of genre labels used to describe songs i and j re-
spectively. For the Myspace artist pages used by the prototypical instance of
SoSoRadio, |I ∩ J |, |I|, and |J | are all between zero and three inclusive. This
measure is quite straightforward in the case where both songs are created by
artists with the same number of genre labels (e.g. if two artists are each de-
scribed by three genre labels and two are the same, the smoothness would be
0.66). However, the case of differing numbers of labels used to describe neigh-
bouring artists is non-obvious enough to warrant a full example. This example
is visualised in Figure 4.8.

raphip-hop

rapfunkblues

song i

song j

0.33

Figure 4.8: An example demonstrating smoothness calculation

Here song i is associated with an artist labelled with the two genre set
(‘hip-hop’, ‘rap’). Each of these genre labels can be considered as 0.5 of the
full genre description of the artist. Similarly, song j is associated with an artist
labeled with three genre set (‘blues’, ‘funk’, ‘rap’). Each of these genre labels
can be considered a 0.33 of the full genre description of artist. Therefore, an
examination of the portion of these two genre descriptions shows an overlap of
a 0.33. This is equivalent to smoothness found by Equation 4.1. Note that the
ratio of overlays in Eq. 4.1 is based on variable genre labels that all carry equal
weight, as is the case in Myspace. There are weighted textual descriptions of
songs that could be used in a similar fashion (e.g. social tags from Last.fm)
though richer label sets bring different problems (Section 5.3).

Taking the simple mean of the smoothness of all transitions in a playlist
provides a measure of how much stylistic change occurs between any two songs

111

across a playlist. The histogram of this average for the test set of playlists is
seen in Figure 4.9.

0.0 0.2 0.4 0.6 0.8 1.0
Average smoothness

0

20

40

60

80

100

120

140

160

180

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of genre label smoothness per playlist

Figure 4.9: The histogram of average smoothness for SoSoRadio playlists. The
histogram bins containing 0.33, 0.5 and 0.66 are coloured red. These three
values are the smoothness for genre descriptor set overlaps of 1 in 3, 1 in 2, and
2 in 3.

The minimum and maximum smoothness for each playlist is also shown in
histograms (Figure 4.10 and Figure 4.11). These histograms give the distribu-
tion of the least and most abrupt stylistic change in each of session.

Taken together, the total genre label counts and mean, minimum, and
maximum smoothness show SoSoRadio’s output to be stylistically heteroge-
neous while generally keeping neighbouring songs similar, in so far as the genre
labels provide an adequate approximation for stylistic description.

4.5.2 Familiarity

The playlists produced by SoSoRadio are also examined on the basis of artist
familiarity. Pageviews, or the number of times an artist’s profile page has been
accessed, are used as a measurement of the familiarity as it is reasonable to
assume that an artist whose page has been accessed frequently is more well
known than an artist whose page has a low pageview count. The examination
of pageviews will follow the course of the previous analysis of genre labels, first

112

0.0 0.2 0.4 0.6 0.8 1.0
Minimum smoothness

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of minimum smoothness in each playlist

Figure 4.10: Histogram of minimum smoothness in each playlist

0.0 0.2 0.4 0.6 0.8 1.0
Maximum smoothness

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of maximum smoothness in each playlist

Figure 4.11: Histogram of maximum smoothness in each playlist

113

looking at the set of songs in each playlist, then examining the transitions.

Figure 4.12 shows the distribution of mean pageviews for the playlists
produced by the radio system.

103 104 105 106 107 108

Mean pageviews

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of mean of each playlist pageviews

Figure 4.12: A histogram of the mean of each playlist’s artists pageviews

Figure 4.13 and Figure 4.14 show the minimum and maximum artist
pageviews, for each playlist in the test set. Figure 4.15 superimposes the three
proceeding histograms showing the difference in shape between the distribu-
tions.

Figure 4.16 show the standard deviation of the same pageviews. The ma-
jority of mean pageviews is around 100,000 with bins decreasing in membership
as the mean goes either higher or lower. The majority of the variance is lower,
approximately 10,000, the smallest bin of the histogram.

Again, an analysis is run on the neighbours, now concerning familiarity.
This is investigated by taking the absolute value of the difference between
pageviews for each neighbouring song’s artist’s in a playlist. The mean can
then be taken for these values across the entire list. Figure 4.17 shows the
histogram of these means.

The minimum and maximum values for the delta pageviews are shown
in Figure 4.18 and Figure 4.19. The mean, minimum and maximum delta
pageview histogram bin counts are shown together in Figure 4.20.

These analyses show a familiarity that varies in a way that mirrors our un-

114

102 103 104 105 106 107 108

Min artist pageviews in each playlist

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

P
la

y
lis

ts

Histogram of min artist pageviews in a playlist

Figure 4.13: Histogram of minimum artist pageviews in a playlist

103 104 105 106 107 108

Max artist pageviews in each playlist

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of max artist pageviews in a playlist

Figure 4.14: Histogram of max artist pageviews in a playlist

115

100 101 102 103 104 105 106 107 108

Pageviews

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Overlay of the distribution of the min mean and max pageviews per playlist

min
mean
max

Figure 4.15: An overlay of the distribution of the minimum, mean and maxi-
mum pageviews per playlist

101 102 103 104 105 106 107 108

Standard deviation pageviews

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of standard deviation of pageviews across each playlist

Figure 4.16: A histogram of the squareroot of the variance of each playlist’s
artists pageviews, with outliers ignored (squareroot of the variance > 107)

116

102 103 104 105 106 107 108

Mean magnitude deltas pageviews

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of mean magnitude deltas of pageviews across each playlist

Figure 4.17: A histogram of the mean magnitude deltas of each playlist’s neigh-
bouring artists pageviews

101 102 103 104 105 106 107 108

Minimum magnitude deltas pageviews

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of min magnitude deltas of pageviews across each playlist

Figure 4.18: A histogram of minimum magnitude deltas of pageviews across
each playlist

117

102 103 104 105 106 107 108

Maximum magnitude deltas pageviews

0

5

10

15

20

25

30

35

40
N

u
m

b
e
r

o
f

p
la

y
lis

ts

Histogram of max magnitude deltas of pageviews across each playlist

Figure 4.19: A histogram of maximum magnitude deltas of pageviews across
each playlist

100 101 102 103 104 105 106 107 108

Delta pageviews

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f

p
la

y
lis

ts

Overlay of the distribution of the min mean and max of pageviews neighbour deltas per playlist

min
mean
max

Figure 4.20: An overlay of the distribution of the minimum, mean and maxi-
mum magnitude delta pageviews per playlist

118

derlying dataset’s degree distribution (Section 3.3.2). That is, playlists are com-
posed mostly of songs from artists with moderate pageviews (around 100,000)
with occasional material from artist with considerably higher pageviews (two
to three orders of magnitude).

4.6 Discussion

After detailing ways to generate better input from users and better keep their
interest, the idea of the web as a platform was briefly discussed. An interactive
model for a web-based, radio-style group recommender system was then speci-
fied. The system itself was described, including a conceptual overview, the user
interface and the core backend. Finally, the playlists produced by the system
while gathering feedback from users were analysed and evaluated.

One of the goals behind the SoSoRadio system is to provide a means for
communities of listeners to form. While the prototype has only one station,
a means of self-organisation is possible simply by having multiple instances
running in parallel. In this case, when a user goes to the site, they would be
presented with a selection of stations, seeing a visual representation of what is
currently playing on each of these stations. Through this initial process a user
places themselves in a community of listeners. If the user’s needs aren’t being
met – they are consistantly being out-voted – they can change to a different
station, and so to a different community.

While the request aggregation was deliberately left uncomplicated for the
prototype, there are other approaches that could be used there which could im-
prove overall listener satisfaction or minimize the number of users who become
disgruntled over time by being repeatedly out-voted. The most notable of these
approaches is the group optimisation described in Baccigalupo [2009].

In order to make a complete, automated, playlist-broadcasting system,
some improvement is needed to the current standard automatic crossfade. Some
amount of phrase segmentation and alignment of neighboring tracks on certain
types of playlists has the potential to vastly improve subjective response to
computationally generated playlists’ automatic playback. While such a mech-
anism does not currently exist within SoSoRadio the theoretical underpinning
is discussed in Appendix A.

While some analysis is discussed with regard to the playlists produced by
this system, this process brings to light the lack of robust means of evaluat-
ing playlists. One particular hindrance is the lack of methods to compare one
playlist to another. With such a tool neighboring session playlists could be
compared in much the same way as neighbouring songs. This would allow per-
sonalisation at the level of playlist via for example the propagation of sequences

119

of ratings to similar playlists (or subsets of playlists) analogous to the genre la-
bel propagation used by Sordo et al. [2007]. In order for such a technique to be
possible, it is necessary to specify a means to compare playlists and quantify
their difference.

120

Chapter 5

A Method to Describe and Compare

Playlists

“For time is the longest distance between two places.”
–Tennessee Williams, The Glass Menagerie, 1944

5.1 Introduction

Inherent to the design of any recommender or retrieval system is a means of
display or delivery of selected content. For a system that recommends music
this means the playback of an audio file. Listening to or playing a piece of
music takes time dependent on the duration of that recording. Given this link
between music and time, when considering what information is relevant for
a recommendation it is vital to consider the context of time; that is, what
music has been played before or will be played after the current recommended
song. Yet little is understood about how playback order affects the success
or failure of a recommendation of a piece of music. Whether a system makes
user-based, object-based or hybrid recommendations, a better awareness and
use of playback order will yield an improved music recommender system.

In order to take advantage of the effect of playback order, it is necessary to
have some means of comparing playlists with one another. While ratings-based
generic recommender strategies could be employed, such techniques could only
be used in systems that allow for the rating of playlists directly (as opposed
to the much more common rating of member songs). Alternatively, a distance
measure between playlists can be used to facilitate the prediction and genera-
tion of well-ordered lists of song sequences for recommendation. This has the
advantage of being applicable to the vast majority of existing playlist gener-
ation systems, many of which do not collect playlist level ratings from their
users. Further, a measure of playlist distance has a number of other applica-
tions in music recommender and discovery systems including label propagation,
predictive personalization and context tuning to name a few.

We propose an objective distance measure between playlists. To better
understand why such a measure is needed, Section 5.2 revisits background
information in existing playlist generation and evaluation techniques. While
any sufficiently expressive and low-dimensional feature is compatible with our
playlist measure, we use a novel social tag-based feature we have developed for
this research. This song-level feature is detailed in Section 5.3. This is followed
by an explanation of our distance measurement itself in Section 5.4. Putting
this into practice, we detail some proof-of-concept evaluation in Section 5.5.
We discuss the results of this evaluation and possible extensions in Section 5.6.

5.2 Playlist as Delivery Mechanism

In this section we survey the use of playlists for the delivery of content in
existing recommendation and retrieval systems. This is followed by a review of
current evaluation methods for generated playlists. These two surveys will show
both the widespread use of playlist generation in music recommendation and
discovery systems and the need for more quality evaluation of these systems.

While this brief survey is focused on automatic playlist generation, there
is a wealth of both academic and lay work discussing various aspects manual
human-driven playlist construction that may be of interest to the reader. Work
in this area tends to deal with radio [Ahlkvist and Faulkner, 2002] or club and
dance disc jockeys [Brewster and Broughton, 2006], being the two principal
areas where the explicit construction of ordered lists of songs are tied to the
field. It is with these areas of manual playlist construction in mind that we will
examine past efforts in both automatic playlist construction and evaluation
techniques.

5.2.1 Usage in the Wild

There have been many music recommendation and retrieval systems that em-
ploy some kind of automatic playlist construction within their system. Fre-
quently this is done as a means of content delivery or, less often, as a way of
facilitating human evaluation of an underlying process such as content-based
music similarity or recommendation. What follows is a brief survey of existing
methods of playlist generation both with and without human intervention.

Hayes and Cunningham [2000] details a web-based system for personalized
radio. In this early system users create and publish playlists facilitated through
a process analogous to collaborative filtering. This results in quasi-automatic
playlist creation, with any sequence ordering depending entirely on the user.
O’Hara et al. [2004] describes another variation of the social interaction inter-
mediary, the Jukola system. This system creates playlists via democratic vote
on every song using mobile devices of listeners in the same physical space. Liu

122

and Reimer [2008] Furthers the idea of collaborative human generation, via a
system called Social Playlist. This system is based on the idea of social in-
teraction through playlist sharing, integrating mobile devices and communal
playback.

Aucouturier and Pachet [2002] describes a fully-automatic rule-based sys-
tem. This system uses existing metadata such as artist name, song title, du-
ration and beats per minute. The system is designed from the ground up to
be scalable and is shown to work given a database of 200,000 tracks. Avesani
et al. [2002] takes an approach that is derived from recommender systems. Here
the authors use the ratings and personalization information to derive radio for
a group. Platt et al. [2002] shows an attempt to optimize a playlist based on
known user preference as encoded in song selection patterns. This effort uses
Gaussian process regression on user preference to infer playlists. The system
uses existing a priori metadata as the features for selection. Knees et al. [2006]
uses web-mining-derived artist similarity with content-based song similarity to
generate playlists automatically. This system combines these two spaces to min-
imize the use of signal analysis. A byproduct of this optimization is improved
playlist generation, as is shown in a small evaluation with human listeners.

Baccigalupo [2009]; Baccigalupo and Plaza [2007] details the Poolcasting
system. Poolcasting uses dynamic weighting of user preferences within a group
of users who are all listening to a common stream with the goal of minimizing
displeasure across the entire group. This results in a system that is very similar
to popular commercial radio in terms of its output. A method for created
playlists using an artist social graph, weighted with acoustic similarity is shown
in Fields et al. [2008b]. This method takes a start and end song and constructs a
playlist using maximum flow analysis on the weighted graph. Another technique
for playlist construction based on the selection of paths between the start and
end songs is shown in Flexer et al. [2008]. In this system content-based similarity
is used to project a set of songs onto a 2-D map, then a path is found from the
start song to the end song with the goal of minimizing the step size between each
member song. A recent approach uses co-occurrence in n-grams extracted from
the internet radio station Radio Paradise1 to deform a content-based similarity
space Maillet et al. [2009]. This deformed space is then used in a manner that
is similar to Flexer et al. [2008] to generate paths from one song to another,
minimizing step distance throughout the path.

Also of note is Ragno et al. [2005], which in contrast to most of the pre-
vious systems, uses nearest neighbour co-occurrence in radio playlist logs to

1http://radioparadise.com

123

http://radioparadise.com

determine song similarity. While the evaluation was preliminary this method
shows promise.

5.2.2 Evaluation Methods

The most prevalent method of evaluation used in playlist generation systems
is direct human evaluation by listening, as is discussed in Section 2.8.3. The
system detailed in Pauws and Eggen [2002], a rule-based automatic playlist
generator that uses features derived from metadata, is similar to Aucouturier
and Pachet [2002]; Platt et al. [2002]. Of note in Pauws and Eggen [2002] is the
thorough human listener testing which shows the automatic playlist generator
performing considerably better than songs ordered randomly. This evaluation,
though better than most, still fails to compare the automatic playlists against
human expert playlists. Additionally, to reduce test time, the evaluation uses
arbitrary one-minute clips from the songs rather than the entirety of the song or
an intentionally chosen segment. A content-based similarity playlist generator
with a novel evaluation is seen in Pampalk et al. [2005]. Here the authors track
the number of times the user presses the skip button to move on from the
currently playing song. All songs that are skipped are considered false positives
and those that are completely played are treated as true positives. From this,
many standard information retrieval techniques can be used in the evaluation,
resulting in a rich understanding of the results. Ultimately, it is still human
user listening evaluation though and its biggest drawback is playback time.
Assuming an average song length of three minutes it would take an an hour
(per listener) to listen to 20 songs plus additional time for listening to songs
that are ultimately skipped. This skip-based evaluation framework is further
used in Bosteels et al. [2009] where existing last.fm user logs (which include skip
behavior) are analyzed using fuzzy set theory to determine playlist-generation
heuristics in the system. Additionally, many systems of playlist generation lack
formal evaluation all together.

5.2.3 Summary

While a number of techniques have been employed to create playlists for a
variety of functions, there exist few for the evaluation of the generated playlists.
These evaluation techniques rely heavily on time-consuming human evaluation.
Beyond that, no means of objectively comparing playlists with one another has
yet been published. In Section 5.4 we will propose just such a means. First
we will describe a novel song-level feature based on tags. A tag-based feature
will encode socio-cultural data that is missing from analogous content-based
features, though social tags bring about some other problems.

124

Figure 5.1: The tag cloud for Bohemian Crapsody by Sickboy, from Last.fm.

5.3 Topic-Modelled Tag-Clouds

In order to encode playlists in a low-dimensional representation we must first
represent their member songs in as a low-dimensional vector. Here we use a
Topic-Modelled Tag Cloud (TMTC) as a pseudo-content-based feature, in a way
that is functionally analogous to various pure content-based methods. Using
tags and topic models in this way is novel and what follows is an explanation
of the process of building this feature.

5.3.1 Tags as Representation

A tag is a word or phrase used to describe a document of some kind, typi-
cally on the Web. Various kinds of documents are described using tags on the
Web including photos2, videos3 and music4. An aggregated collection of tags,
weighted by the number of users who ascribe it to a given object, is commonly
referred to as a tag cloud.

Tag clouds get their name from the most common visualization method
used with them, where each tag is displayed with the font size in proportion
to the weight, arranged in a way that resembles a cloud. An example of a tag
cloud5 can be seen in Figure 5.1 As can be seen in this example, tag clouds
provide a rich description of the music it describes. Tags and collections of tags
in various forms provide the basis for many techniques within music informatics
including recommendation, retrieval and discovery applications [Aucouturier
and Pampalk, 2008; Lamere, 2008].

In addition to human-generated tags being used, there is some research
directed toward the automatic application of tags and inference of associated
weights on unlabelled pieces of music [Barrington et al., 2008; Bertin-Mahieux
et al., 2008; Eck et al., 2007; Hoffman et al., 2009].

2e.g. http://flickr.com
3e.g. http://youtube.com
4e.g. http://last.fm or http://musicbrainz.org
5This tag cloud is for the track Bohemian Crapsody by the artist Sickboy. The tags and

the rendering both come from last.fm, available at http://www.last.fm/music/Sickboy/_/

Bohemian+Crapsody/+tags

125

http://flickr.com
http://youtube.com
http://last.fm
http://musicbrainz.org
http://www.last.fm/music/Sickboy/_/Bohemian+Crapsody/+tags
http://www.last.fm/music/Sickboy/_/Bohemian+Crapsody/+tags

5.3.2 Reducing the Dimensionality

There exist some techniques [Begelman et al., 2006, for example] to determine
semantic clustering within a tag cloud; however, these systems are built to fa-
cilitate browsing and do not create a representation with a sufficiently reduced
dimensionality/number of dimensions. The previous work of Levy and Sandler
[2008] comes the closest to the dimensional reduction required, also dealing
with social tags for music. This work, through the use of aspect models and la-
tent semantic analysis, brings the dimensionality down into the hundreds, while
preserving meaning. But, this order of dimensions is still too high to compute
meaningful distance across multi-song playlists. A feature with a number of
dimensions of the order 102 would suffer from the curse of dimensionality [We-
ber et al., 1998]: because of its high dimensionality, any attempt to measure
distance becomes dominated by noise. However, a technique developed for im-
proved modelling in text information retrieval, topic models provide the reduced
dimensional representation we require. Topic models are described in Blei and
Lafferty [2009] as “probabilistic models for uncovering the underlying semantic
structure of [a] document collection based on a hierarchical Bayesian analysis of
the original text.” In topic modeling, a document is transformed into a bag of
words, in which all of the words of a document are collected and the frequency
of the occurrence in recorded. We can use the weighted collection of tags in a
tag cloud as this bag of words, with tags serving as tokenized words.

There are a few different ways of generating topic models; for our feature
generation we will be using latent Dirichlet allocation [Blei et al., 2003], treating
each tag cloud as a bag-of-words. In LDA, documents (in our case tags clouds
of songs) are represented as a mixture of implied (or latent) topics, where each
topic can be described as a distribution of words (or here, tags). More formally
given the hyper-parameter α, and the conditional multinomial parameter β,
Equation 5.3.2 gives the joint topic distribution θ, a set of N topics z and a set
of M tags w.

p(θ, z,w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β) (5.1)

In Figure 5.2 LDA is shown as a probabilistic graphical model. In order to
create topic models using LDA, we need to specify p(θ|α) and p(zn|θ). We
estimate our parameters empirically from a given corpus of tag clouds. This
estimation is done using variational EM as described in Blei et al. [2003]. This
allows topic distributions to be generated in an unsupervised fashion, though
the number of topics in a corpus must be specified a priori.

126

β

wzθα
N
M

Figure 5.2: The graphic model of LDA Blei et al. [2003]. The replicates are
represented as the two boxes. The outer box M represents the corpus of doc-
uments, while the inner box N represents the repeating choice of topics and
words which make up each document.

Once the LDA model is generated, it is used to infer the mixture of topics
present in the tag cloud for a given song. This is done via variational inference
which is shown in Blei et al. [2003] to estimate the topic mixture of a document
by iteratively minimizing the KL divergence from variational distribution of the
latent variables and the true posterior p(θ, z|w, α, β).

This process in its entirety is shown as a block diagram in Figure 5.3. Once
it is completed for every song in our dataset, we will have a single vector with a
dimensionality equal to the number of topics in our LDA whose entries indicate
topic occupancy for that song.

5.4 Playlists as a Sequence of Topic Weights

Given the single-vector-per-song reduction, we represent the playlists these song
are in as ordered sequences of these vectors. Thus each playlist is represented
as an l×d-dimensional vector, where l is the number of songs in a given playlist
and d is the number of topics in our LDA model.

5.4.1 Measuring Distance

To both manage and measure the distance between these li × d dimensional
vectors we use audioDB6. The use of audioDB to match vectors of this type is
detailed in Rhodes et al. [2011]. Briefly, distance is calculated by means of a
multidimensional Euclidian measure.

d2
Euc(x, y) =

l∑
i=1

d∑
j=1

(xij − yij)2 (5.2)

Here li is an arbitrary length subsequence of i vectors. In practice, i is selected
to be less than or equal to the smallest sequence length for a complete playlist

6source and binary available at http://omras2.doc.gold.ac.uk/software/audiodb/

127

http://omras2.doc.gold.ac.uk/software/audiodb/

gather tags for all songs

create LDA model describing
topic distributions

infer topic mixtures for all
songs

create vector database
of playlists

Figure 5.3: The complete process for construction of a TCTM feature set

in a dataset. The distance between two playlists is then the minimum distance
between any two length i sub-vectors drawn from each playlist. One effect of
this technique is easy handling of playlists of unequal length.

This type of distance measurement has been used with success on sequences
of audio frames [Casey et al., 2008a; Casey and Slaney, 2006]. The distance
measure in use between vectors can also be changed. In particular there has
been work showing that statistical features (such as topic models) may benefit
from the use of Manhattan distance [Grauman and Darrell, 2004; Howarth
and Rüger, 2005], however for our prototypical evaluation we have used simple
Euclidean distance.

5.5 Evaluation

The goal of our evaluation is to show the fitness of our distance measurement
through preliminary retrieval tests: searching for playlists that start at the
same time of day as our query playlist and searching for the playlists from the
same station from a database of stations of the same genre. We examine the
logs of a large collection of radio stations, exhaustively searching example sets.
Through precision and recall we see that our measure organizes playlists in a

128

Source St Smt Pt Pavg(time) Pavg(songs)

Whole yes.com 885810 2543 70190 55min 12.62
“Rock” stations 105952 865 9414 53min 11.25
“Jazz” stations 36593 1092 3787 55min 9.66
“Radio Paradise” 195691 2246 45284 16min 4.32

Table 5.1: Basic statistics for both the radio log datasets. Symbols are as
follows: St is the total number of song entries found in the dataset; Smt is the
total number of songs in St where tags could not be found; Pt is total number
of playlists; Pavg(time) is the average runtime of these playlists and Pavg(songs)
is the mean number of songs per playlist.

predictable and expected way.

5.5.1 Dataset

In order to test these proposed techniques a collection of radio station logs were
gathered. These logs come from a collection of broadcast and online stations
gathered via Yes.com7. The logs cover the songs played by all indexed stations
between 19-26 March 2010. For our evaluation task using this data source
we look at subsets of this complete capture, based on genre labels applied to
these stations. Specifically we examine stations of the genres rock and jazz.
The complete Yes.com dataset also includes stations in the following genre
categories: Christian, Country, Electronica, Hip-Hop, Latin, Metal, Pop, Punk,
R&B/Soul, Smooth Jazz and World. These labels are applied by the stations
themselves and the categories are curated by Yes.com. Additionally, the play
logs from Radio Paradise8 from 1 January 2007 to 28 August 2008 form a second
set. We then attempted to retrieve tag clouds from Last.fm9 for all songs in
these logs. When tags were not found the song and its associated playlist were
removed from our dataset.

These logs are then parsed into playlists. For the radio logs retrieved via the
Yes API, the top of every hour was used as a segmentation point to approximate
the boundary between distinct programs. We assume that program are more
likely than not to start and finish on the hour in US commercial broadcast. Note
that this method of boundary placement will almost certainly over-segment
radio programs, as many radio programs are longer than one hour. However,
given that our distance measure compares fixed-length song sequences across
playlists, this over-segmentation should produce only minimal distortion in our
results. The Radio Paradise logs include all the links or breaks between songs

7http://api.yes.com
8http://www.radioparadise.com/
9http://last.fm

129

http://api.yes.com
http://www.radioparadise.com/
http://last.fm

where the presenter speaks briefly. For experiments using the Radio Paradise
logs these links are used as playlist boundaries. This leads to a slight difference
in the type of playlist used from Radio Paradise versus Yes. The playlists
coming from Radio Paradise represent strings of continuously played songs,
with no breaks between the songs in the playlists. The playlists from Yes are
approximations of a complete radio program and can therefore contain some
material inserted between songs (e.g. presenter link, commercials).

Statistics for our dataset can be seen in Table 5.1. We then use the tags
clouds for these songs to estimate LDA topic models as described in Section
5.310. For all our experiments we specify 10 topic models a priori. The five
most relevant tags in each of the topics in models trained on both the “Rock”
and “Jazz” stations can be seen Table 5.2.

5.5.2 Daily Patterns

Our first evaluation looks at the difference between the time of day a given query
playlist starts and the start time for the closest n playlists by our measure. For
this evaluation we look at the 18-month log from Radio Paradise as well as
the “Rock” and “jazz” labelled stations from Yes.com, each in turn. Further
we use a twelve-hour clock to account for overnight recorded program loops.
The basis for this test relies on the hypothesis that for much commercial radio
content in the United States, branding of programs is based on daily repeatable
of tone and content for a given time of day. It should therefore be expected
that playlists with similar contours would occur at similar times of day across
stations competing for similar markets of listeners.

Figure 5.4 shows the mean across all query playlists of the time difference
for each result position for the closest n results, where n is 200 for the Radio
Paradise set and 100 for the Yes.com set. The mean time difference across all
three sets is basically flat, with an average time difference of just below 11000
or about three hours. Given the maximum difference of 12 hours, this result
is entirely the opposite of compelling, with the retrieved results showing no
correspondence to time of day. Further investigation is required to determine
whether this is a failure of the distance metric or simply an accurate portrayal
of the radio stations logs. A deeper examination of some of the Yes.com data
shows some evidence of the latter case. Many of the playlist queries exactly
match (distance of 0) with the entirety of the 200 returned results. Further
these exact match playlists are repeated evenly throughout the day. One of

10Our topic models are created using the open source implementation of LDA found in
the gensim python package available at http://nlp.fi.muni.cz/projekty/gensim/ which in
turn is based on Blei’s C implementation available at http://www.cs.princeton.edu/~blei/
lda-c/

130

http://nlp.fi.muni.cz/projekty/gensim/
http://www.cs.princeton.edu/~blei/lda-c/
http://www.cs.princeton.edu/~blei/lda-c/

st
at

io
n

la
be

l
t 1

t 2
t 3

t 4
t 5

Sn
ow

P
at

ro
l

B
ob

M
ar

le
y

fe
m

al
e

vo
ca

lis
ts

au
pa

P
et

e
80

s
ru

m
ba

Fe
is

t
A

nn
a

N
al

ic
k

w
hi

st
lin

g
ne

w
w

av
e

“R
oc

k”
90

s
jo

hn
m

ay
er

C
hi

ca
s

T
ri

pl
e

J
H

ot
te

st
10

0
da

vi
d

bo
w

ie
gr

ee
n

da
y

dr
un

k
lo

ve
pl

ay
lis

t
20

09
re

vi
ew

ne
ue

nt
d

D
yn

am
it

fe
is

t
ba

ck
in

g
vo

ca
ls

Sa
ra

h
M

cL
ac

hl
an

fu
n

as
fu

ck
sy

nt
h

po
p

m
ot

ow
n

jo
hn

m
ay

er
60

s
Sa

de
F

la
m

en
co

so
ul

ac
ou

st
ic

ja
zz

-
sa

x
de

se
rv

es
an

ot
he

r
lis

te
n

ta
ct

ile
sm

oo
th

ja
zz

“J
az

z”
70

s
co

ri
nn

e
ba

ile
y

ra
e

ac
id

ja
zz

ti
ll

yo
u

co
m

e
to

m
e

gu
it

ar
po

nd
er

fu
nk

bo
nn

ie
ra

it
t

re
gg

ae
pi

an
o

ca
fe

m
oc

ha
D

is
co

D
av

id
P

ac
k

2
co

ol
ja

zz
20

10
w

in
e

st
at

io
n

la
be

l
t 6

t 7
t 8

t 9
t 1

0

cl
as

si
c

ro
ck

T
R

B
re

m
in

ds
m

e
of

w
in

te
r

N
ee

dt
ob

re
at

he
K

ri
st

a
B

ri
ck

ba
ue

r
60

s
E

le
ct

ro
ni

ca
D

an
ce

ki
ng

s
of

le
on

pl
va

ro
na

sw
ow

20
09

da
y

en
d

“R
oc

k”
70

s
m

ys
te

ri
ou

s
so

ng
s

th
at

sa
ve

m
y

lif
e

T
he

Sc
ri

pt
i

bo
ug

ht
a

to
ot

hb
ru

sh
T

he
B

ea
tl

es
be

st
so

ng
s

of
20

09
so

ng
s

to
tr

av
el

br
ill

ia
nt

m
us

ic
bl

ue
gr

as
s

th
e

ro
lli

ng
st

on
es

tr
ib

ut
e

to
ge

or
ge

M
us

e
va

n
m

or
ri

so
n

om
g

fo
llo

w
-u

p
rn

b
fe

m
al

e
vo

ca
lis

ts
cl

as
si

c
ro

ck
Sm

oo
th

Ja
zz

ja
zz

so
ul

no
ra

h
jo

ne
s

80
s

sa
xo

ph
on

e
“J

az
z”

in
st

ru
m

en
ta

l
fe

m
al

e
vo

ca
lis

ts
di

do
ro

ck
sm

oo
th

ja
zz

sa
x

gu
it

ar
N

eo
-S

ou
l

ja
zz

70
s

co
nt

em
po

ra
ry

ja
zz

la
ti

n
ja

zz
R

ob
in

T
hi

ck
e

vo
ca

l
ja

zz
ya

ch
t

ro
ck

in
st

ru
m

en
ta

l

T
ab

le
5.

2:
T

he
fiv

e
m

os
t

re
le

va
nt

ta
gs

in
ea

ch
to

pi
c.

U
pp

er
m

od
el

is
al

l
th

e
Y

es
.c

om
R

oc
k

st
at

io
ns

,
lo

w
er

m
od

el
is

al
l

Y
es

.c
om

Ja
zz

st
at

io
ns

.

131

these queries is shown in Figure 5.5. The existence of these repeating playlists
throughout the day ensures this task will not confirm our hypothesis, perhaps
due to programming with no reliance on time of day at least in the case of
Radio Paradise.

5.5.3 Inter-station vs. Intra-station

In this evaluation we examine the precision and recall of retrieving playlists from
the same station as the query playlist. Here we look at the “Rock” and “Jazz”
labelled stations retrieved via the Yes API, each in turn. It is expected that a
given station will have its own tone or particular feel that should lead to playlists
from that station being more apt to match playlist from their generating station
then with other stations from the same genre. More formally, for each query
we treat returned playlists as relevant, true positives when they come from the
same station as the query playlist and false positives otherwise. Based on this
relevance assumption, precision and recall are calculated using the following
standard equations.

P =
|{relevantplaylists}

⋂
{retrievedplaylists}|

|{retrievedplaylists}|
(5.3)

R =
|{relevantplaylists}

⋂
{retrievedplaylists}|

|{relevantplaylists}|
(5.4)

The precision versus recall for a selection of stations’ playlists from both the
“Rock” and “Jazz” stations are shown in Figure 5.6. When considering the
precision and recall performance it is useful to compare against random chance
retrieval. There are 100 stations labeled “Rock” and 48 labeled “Jazz”. Under
chance retrieval a precision of 0.01 would be seen for “Rock” and 0.0208 for
“Jazz”.

5.5.4 Summary

Two different evaluation tasks have been run using real-world radio-log data
to explore the usefulness of our playlist match technique. The first of these,
an examination of the time difference was flat across result-length variance.
While this implies lack of discrimination into daily patterns, it is not possible
to determine from the available data whether this is an accurate reflection of the
progamming within the dataset or a result of the distance measure not being
sufficient for the task. The second task shows the performance of retrieving
hourly playlists from a selection of stations using playlists from that station as
a query. Here we see a great deal of promise, especially when comparing the
query results against random chance, which it outperforms considerably.

132

5.6 Discussion

Having reviewed recent work in various methods of playlist generation and
evaluation in Section 5.2, we have shown that there is a need for better ways
to objectively compare playlists to one another. We detailed a method of doing
so in Section 5.4, though first, to better encode socio-cultural data along with
content-based data, we presented a novel tag-based feature, TMTC, using tags
summarized using LDA topic models in Section 5.3. This was follow by two
task evaluations to examine our playlist-matching technique and song feature
on real-world playlist data from radio logs in Section 5.5.

While our evaluation shows the promise of this technique on sampled data,
there is much room for improvement. Principal among these is the exploration
of non-Euclidean distance measures. Manhattan distance (or L1) seems to
have the most direct applicability and its use could prove to be quite beneficial.
Another area for future work is in the use of the measure on further data
and datasets. One of the best ways to improve here would be in the use of
datasets with a more exactly known ground truth, in order to best apply known
recommender and retrieval evaluation methods to them.

This leads to a further avenue of future work, testing the measure against
direct human evaluation. While our matching technique has many uses with
recommendation and discovery, if it proved to align with human evaluation it
would be considerably more useful.

133

F
ig

ur
e

5.
4:

T
he

m
ea

n
st

ar
t

ti
m

e
di

ffe
re

nc
e,

w
it

h
sq

ua
re

d
er

ro
r

of
th

e
m

ea
n.

134

Figure 5.5: The time of day difference from the query playlist for 200 returned
results, showing even time of day spread. Note that all the results show here
have a distance of 0 from the query.

135

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

re
ca

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

precision

W
A

P
S
 -

 A
kr

o
n
,

O
H

 -
 R

o
ck

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

re
ca

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

precision

W
N

D
T
 -

 G
a
in

e
sv

ill
e
 -

 O
ca

la
,

FL
 -

 R
o
ck

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

re
ca

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

precision

W
H

R
L

-
A

lb
a
n
y
 -

 S
ch

e
n
e
ct

a
d
y
 -

 T
ro

y
,

N
Y
 -

 R
o
ck

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

re
ca

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

precision

W
C

LK
 -

 A
tl

a
n
ta

,
G

A
 -

 J
a
zz

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

re
ca

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

precision

W
E
A

A
 -

 B
a
lt

im
o
re

,
M

D
 -

 J
a
zz

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

re
ca

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

precision

W
JZ

X
 -

 M
ilw

a
u
ke

e
 -

 R
a
ci

n
e
,

W
I
-

Ja
zz

F
ig

ur
e

5.
6:

P
re

ci
si

on
ve

rs
us

R
ec

al
lf

or
si

x
st

at
io

ns
w

he
n

us
in

g
th

ei
r

ho
ur

ly
pl

ay
lis

ts
to

qu
er

y
fo

r
ot

he
r

pl
ay

lis
ts

fr
om

th
e

sa
m

e
st

at
io

n.
In

ea
ch

qu
er

y
th

e
nu

m
be

r
of

re
su

lt
s

re
tr

ie
ve

d
is

se
le

ct
ed

to
m

ax
im

iz
e

th
e

F
1

sc
or

e.

136

Chapter 6

Conclusions

“Until I die there will be sounds. And they will continue following
my death. One need not fear about the future of music.”
– John Cage, Experimental Music, 1957

6.1 Summary

In this thesis we investigated the playlist, a set of songs to be listened to to-
gether, typically in a specified order. We surveyed existing playlisting methods
and the automatic similarity estimation techniques many of them depend on.
We proposed a novel multimodal similarity measures integrating content-based
similarity with artist relational social graphs. We then used this complex sim-
ilarity and community segmentation to drive a user-steerable automatic radio
station. In attempting to evaluate this prototypical application, we specified a
new means of comparing playlists, based on a novel low-dimensional song level
feature using social tag descriptors. In its totality this work has significantly
improved the state of the art in the understanding and construction of playlists
through betterment of these composite parts.

6.2 Contributions

1. A thorough review of previous research work related to playlists, across
multiple disciplines. This show the interlink between music similarity and
playlist generation, as well as an over-dependance on homogeneity as a
marker of success in playlist construction. (Sections 2.5 and 2.8)

2. A published open dataset, sampled from Myspace, of artists, their songs
and their relationships to other artists; the complex network analytics
showing that this sample is similar to other webs of data. (Chapter 3)

3. Analysis using the mutual information across multiple distance measures,
both social and acoustic, within the sampled myspace set which shows
very little (less than 1 bit) of shared information between social and

acoustic distance (i.e. Do you sound like your friends? No more than
anyone else.) (Chapter 3)

4. The application of graph path-finding techniques as a novel means for
playlist generation, specifically the use of maximum-flow analysis. (Chap-
ter 3)

5. A system model that provides a flexible framework for experimentation
in the use of a weighted-graph-based datasets into a user-centric group
recommender system. (Chapter 4)

6. A low-dimensional vector representation of a song, using weighted social
tags and latent Dirichlet allocation (Section 5.3). Results showing that
quantifying dissimilarity between playlists by representing a playlist’s con-
stituent songs in a low dimensional space and applying sequence matching
techniques is an effective means to compare playlists as seen in the ability
to retrieve playlists from the same radio station from a large set. (Sec-
tion 5.4)

6.3 Limitations and Future Work

The work presented in this thesis poses as many questions as it answers. In
this section we discuss a few of these questions and possible avenue of research.
In part these questions stem from the limits of our research. In particular: the
requirement to have full knowledge of an artist network, and the related lack of
scale; the reliance on computationally complex audio-derived features; and the
lack of a satisfying and pragmatic solution to the particular issues surrounding
the evaluation of playlists.

Understanding Network Ecology

When considering multi-modal analysis of networks of musicians and their mu-
sic there are a number of open avenues for continued exploration. It remains to
examine community detection methods that operate locally, without knowledge
of the entire network. We also plan to address further directed-artist-graph
analysis, bipartite networks of artists and listeners, different audio-analysis
methods, and the application of these methods to music recommendation.

Many of these tasks require the expansion of our sample network. The
goal of any effort to expand the sample size drawn from a network such as
Myspace is best focused on ways to make the sample set more indicative of
the whole. While it is impossible to assess this without capturing the entire
graphs some assumptions can be made. Snowball sampling has a tendency
to oversample hubs. Given this, a better expanded network is likely to result

138

through the selections of new starting seed artist (most likely at random) and
proceeding via a breadth-first crawl until that crawl results in overlap with the
known network. It is reasonable to assume that this method, when used over
multiple hubs, will produce a lower proportion of high centrality hubs then
simply continuing further with the existing breadth first crawl. With a lower
proportion of these over-sampled hubs, the social structure of the sample would
better match that of the whole.

Use of Local-Only Awareness

One of the most significant limitations of the playlist technique employed in
SoSoRadio (Chapter 4), or any playlist-generation method based on the ana-
lytics of Chapter 3, is the dependency on a complex indexing process and an
assumption that the indexing process has covered the whole graph. Among
other problems, this creates a delay between the system and the data that
can yield incorrect and out-of-date results. One way these limitations can be
overcome is by developing algorithms that use local-only awareness, the direct
surroundings of the query songs, as a starting point. We have developed a
lightweight web application called Roomba Recon1 to explore the feasibility of
this approach. This application creates a playlist between any two songs avail-
able on Soundcloud2, following the social links between artists in the network.
A screen capture of the application is shown in Figure 6.1 and a description
follows.

Blind paths

The notion of finding an optimal path from between two nodes breaks down
when the whole graph is not known a priori. Rather, a search model is more
helpful. In this prototype, A* search [Hart et al., 1968] is employed from both
the start and end song. In this way the graph is sampled as the playlist solution
is constructed, rather than in advance. This introduces some amount of error,
as the playlist generated will not provably be the shortest path. However it
is possible, perhaps even likely that this error will not lead to a noticeable
reduction in the system’s ability to meet the needs of users. Testing of this sort
remains to be carried out.

Replacing Audio Features

Another stumbling block in the removal of the requirement for a prebuilt index
is the complexity of signal-based audio features. The suggested A* search re-
quires a cost function in order to determine the distance from a candidate song

1The application is available for demonstration at http://doc.gold.ac.uk/~map01bf/

recon/playlist. The python source is available at https://github.com/gearmonkey/

roombarecon
2http://soundcloud.com

139

http://doc.gold.ac.uk/~map01bf/recon/playlist
http://doc.gold.ac.uk/~map01bf/recon/playlist
https://github.com/gearmonkey/roombarecon
https://github.com/gearmonkey/roombarecon
http://soundcloud.com

Figure 6.1: A playlist created by the Roomba Recon playlist generation system,
creating a path between any two songs in the Soundcloud network without prior
knowledge.

to the query song. While the use of content-based similarity measures seem
obvious they are too slow to be practical in this context, where approximately
800 comparisons3 are required to generate a playlist of length 10. Rather than
rely on a spectral analysis of the signal, our Roomba Recon application allows
for the use of a facsimile text-based feature inspired by the feature detailed in
Section 5.3. The Soundcloud network allows artists to tag each song and other
users to comment on the song in free text. By using a simple natural language
processing technique, term frequency·independent document frequency (tf·idf)
[Salton, 1989], on these comments, we can generate a reduced dimensional rep-
resentation of these song, allow for the distance to be measured between pairs of
songs. The speed tradeoff here is apparent. If the idf is calculated using a small
random sample in advance, the term frequency for all songs in a comparison
can be generated in a few minutes, rather than the few hours it would take to
download and process the audio. What the differences are between these two
pseudo-metric spaces, and whether there is a yet more-efficient feature space
that can be used for this ‘real-time’4 playlist generation, remain open questions.

3This conservatively assumes each artist has 10 friends and 10 songs, actual use may require
more song-to-song comparisons.

4When considering a playlist from the user’s point of view, real-time generation means the
next song in the playlist has to be selected and available prior to the end of the currently-
playing song.

140

Improvements in Evaluation

While considerable effort has been made to perform robust evaluation on gen-
erated playlists and relatedly to compare differing similarity spaces, there are
many possible ways to continue forward. While the best way to test playlists
is through large-scale human evaluations, these are also the longest and most
costly to run. New statistical methods offer other avenues of evaluation. The
work of Herrera et al. [2010] adds time of day of listening using circular statis-
tics and offers potential means of evaluation. Critically, any evaluation solution
in the future will need to be multifaceted, using statistical and computational
methods while also employing human evaluation through both listening and use
testing.

6.4 Concluding Remarks

An underlying aim in this work is to show that playlist construction (and
analysis) is intricately tied to understanding the relationships between songs.
This is something that is both obvious and, in prior work, unacknowledged.
Given that, it is no surprise that in order to meet the goal of making playlists
richer, it is first necessary to broaden the scope of information encoded in de-
scriptions of the similarity (or more generally, relationships) of pieces of music.
In this work, this added information comes the inclusion of the social data of
musicians along side the content they produce. This social data, while always
important, has only recently existed in a form that allows for the scale of aggre-
gation required. The improvements in playlist generation then followed from
this more complex similarity measure, together with a shift in focus away from
flat, homogenous playlists.

While this provides a clear improvement in the state of the art, it also raises
many new and interesting questions. What other domains might offer better
insight into music and music similarity? Just how necessary is musical content
in making a high quality music recommendation, in the form of a playlist or
something else? And if content doesn’t help in making a music recommendation,
what might that say about us? It has been said that humans are basically social
animals, is it reasonable to assume we are social listeners?

Thank you for reading, and pick out another record would you, this one’s
nearly done.

141

Bibliography

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions.
IEEE transactions on knowledge and data engineering, 17(6):734–749. (Cited
on pages 36 and 95.)

Ahlkvist, J. A. and Faulkner, R. (2002). ‘Will This Record Work for Us?’: Man-
aging Music Formats in Commercial Radio. Qualitative Sociology, 25(2):189–
215. (Cited on page 122.)

Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., and Jeong, H. (2007). Analysis of
topological characteristics of huge online social networking services. In The
World Wide Web Conference (WWW), Alberta, Canada. (Cited on page 77.)

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: theory,
algorithms, and applications. Prentice-Hall, Inc. (Cited on page 73.)

Alghoniemy, M. and Tewfik, A. (2001). A network flow model for playlist gen-
eration. In IEEE International Conference on Multimedia and Expo (ICME).
(Cited on page 73.)

Amaral, L. A. N., Scala, A., Barthélémy, M., and Stanley, H. E. (2000). Classes
of small-world networks. In Proceeding of the National Academy of Sciences.
(Cited on page 78.)

Anand, S. S. and Mobasher, B. (2007). Contextual Recommendation, pages
142–160. Springer. (Cited on page 23.)

Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I. (2003). An Intro-
duction to MCMC for Machine Learning. Machine Learning, 50(1-2):5–43.
(Cited on page 30.)

Anglade, A., Tiemann, M., and Vignoli, F. (2007). Virtual communities for
creating shared music channels. In International Conference on Music Infor-
mation Retrieval (ISMIR). (Cited on page 74.)

Asante, M. K. (2008). It’s Bigger Than Hip Hop: The Rise of the Post Hip
Hop Generation. St. Martin’s Press. (Cited on page 27.)

Aucouturier, J.-J. and Pachet, F. (2002). Scaling up playlist generation. In
IEEE International Conference on Multimedia and Expo (ICME). (Cited on
pages 55, 100, 102, 123 and 124.)

Aucouturier, J.-J. and Pachet, F. (2004). Improving timbre similarity: How
high’s the sky? Journal of Negative Results in Speech and Audio Sciences.
(Cited on pages 30, 55 and 75.)

Aucouturier, J.-J. and Pampalk, E. (2008). Introduction-from genres to tags:
A little epistemology of music information retrieval research. Journal of New
Music Research, 37(2):87–92. (Cited on page 125.)

Avesani, P., Massa, P., Nori, M., and Susi, A. (2002). Collaborative radio
community. In International Conference on Adaptive Hypermedia and Adap-
tive Web-Based Systems (AH), pages 462–465. Springer. (Cited on pages 56
and 123.)

Baccigalupo, C. (2009). Poolcasting: an intelligent technique to customise mu-
sic programmes for their audience. PhD thesis, Institut d’Investigació en
Intelligència Artificial. (Cited on pages 119 and 123.)

Baccigalupo, C. and Plaza, E. (2007). Sharing and Combining Listening Expe-
rience: A Social Approach to Web Radio. In International Computer Music
Conference (ICMC), Copenhagen, Denmark. (Cited on page 123.)

Barkhuus, L. and Dey, A. (2003). Is Context-Aware Computing Taking Control
away from the User? Three Levels of Interactivity Examined, volume 2864
of Lecture Notes in Computer Science, pages 149–156. Springer. (Cited on
page 36.)

Barrington, L., Turnbull, D., and Lanckriet, G. (2008). Auto-tagging music
content with semantic multinomials. In International Conference on Music
Information Retrieval (ISMIR). (Cited on page 125.)

Baur, D., Boring, S., and Butz, A. (2010). Rush: Repeated recommendations
on mobile devices. In International Conference on Intelligent User Interfaces
(IUI), pages 91–100, New York, NY, USA. ACM. (Cited on page 45.)

Begelman, G., Keller, P., and Smadja, F. (2006). Automated Tag Clustering:
Improving search and exploration in the tag space. In Collaborative Web Tag-

143

ging Workshop , Co-Located with the World Wide Web Conference (WWW).
(Cited on page 126.)

Bello, J., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M.
(2005). A tutorial on onset detection in music signals. IEEE Transactions
on Speech and Audio Processing, 13(5):1035 – 1047. (Cited on page 159.)

Bello, J. P. (2003). Toward the Automated Analysis of Simple Polyphonic Mu-
sic: A Knowledge-based Approach. PhD thesis, Department of Electronic
Engineering, Queen Mary, University of London. (Cited on page 159.)

Berenzweig, A., Logan, B., Ellis, D. P. W., and Whitman, B. P. W. (2004). A
large-scale evaluation of acoustic and subjective music-similarity measures.
Computer Music Journal, 28(2):63–76. (Cited on pages 29, 52, 55 and 74.)

Bertin-Mahieux, T., Eck, D., Maillet, F., and Lamere, P. (2008). Autotag-
ger: a model for predicting social tags from acoustic features on large mu-
sic databases. Journal of New Music Research, 37(2):101–121. (Cited on
page 125.)

Blei, D. and Lafferty, J. (2009). Topic Models. Text Mining: Theory and
Applications. Taylor and Francis. (Cited on page 126.)

Blei, D. M., Ng, A., and Jordan, M. (2003). Latent dirichlet allocation. Journal
of Machine Learning Research, 3:993–1022. (Cited on pages 126 and 127.)

Blow, C. M. (2009). Swan Songs? The New York Times, 159(213):A17. (Cited
on page 16.)

Bogdanov, D., Serrà, J., Wack, N., and Herrera, P. (2009). From low-level
to high-level: Comparative study of music similarity measures. In Inter-
national Workshop on Advances in Music Information Research (AdMIRe),
Co-Located with the IEEE International Conference on Multimedia and Expo
(ICME). (Cited on page 31.)

Bogdanov, D., Serrà, J., Wack, N., and Herrera, P. (2010). Hybrid music simi-
larity measure. Music Information Retrieval Evaluation eXchange (MIREX)
Abstract. (Cited on pages 31 and 33.)

Bollen, D., Knijnenburg, B. P., Willemsen, M. C., and Graus, M. (2010). Un-
derstanding choice overload in recommender systems. In ACM International
Conference on Recommender Systems (RecSys), pages 63–70, New York, NY,
USA. ACM. (Cited on page 103.)

144

Bosteels, K., Pampalk, E., and Kerre, E. E. (2009). Evaluating and Analysing
Dynamic Playlist Generation Heuristics Using Radio Logs and Fuzzy Set
Theory. In Conference of the International Society of Music Information
Retrieval (ISMIR). (Cited on pages 124 and 158.)

Brewster, B. and Broughton, F. (2006). Last Night A DJ Saved My Life; The
history of the disc jockey. Headline Book Publishing, London, United King-
dom, 2nd edition. (Cited on pages 23, 26, 27, 122 and 158.)

Bryk, A. S. and Weisberg, H. I. (1976). Value-added analysis: A dynamic
approach to the estimation of treatment effects. Journal of Educational and
Behavioral Statistics, 1(2):127–155. (Cited on page 104.)

Bull, M. (2006). Investigating the Culture of Mobile Listening: From Walk-
man to iPod, volume 35 of Computer Supported Cooperative Work. Springer.
(Cited on page 27.)

Cano, P., Celma, Ò., Koppenberger, M., and Buldu, J. M. (2006). The topology
of music recommendation networks. Chaos: An Interdisciplinary Journal
of Nonlinear Science. http://arxiv.org/abs/physics/0512266v1. (Cited on
pages 74 and 78.)

Cano, P., Koppenberger, M., and Wack, N. (2005). Content-based music
audio recommendation. In ACM International Conference on Multimedia
(ACMMM), pages 211–212. (Cited on page 31.)

Casey, M., Rhodes, C., and Slaney, M. (2008a). Analysis of minimum distances
in high-dimensional musical spaces. IEEE Transactions on Audio, Speech,
and Language Processing, 16(5):1015 –1028. (Cited on page 128.)

Casey, M. and Slaney, M. (2006). The importance of sequences in music sim-
ilarity. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Toulouse, France. (Cited on page 128.)

Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., and Slaney, M.
(2008b). Content-Based Music Information Retrieval: Current Directions
and Future Challenge. Proceedings of the IEEE, 96(4):668–696. (Cited on
pages 74 and 158.)

Chen, C.-h., Härdle, W., Unwin, A., Cox, M. A. A., and Cox, T. F. (2008).
Multidimensional scaling. In Handbook of Data Visualization, Springer Hand-
books of Computational Statistics, pages 315–347. Springer Berlin Heidel-
berg. 10.1007/978-3-540-33037-0 14. (Cited on page 59.)

145

Clauset, A., Newman, M. E. J., and Moore, C. (2004). Finding community
structure in very large networks. Physical Review E, 70(6):066111. (Cited on
pages 74, 79 and 80.)

Cliff, D. (1999). Hang the DJ: Automatic sequencing and seamless mixing of
dance-music tracks. Technical Report 104, Hewlett-Packard Laboratories.
(Cited on pages 40 and 41.)

Cliff, D. (2006). hpDJ: An automated DJ with floorshow feedback. Consuming
Music Together. Springer. (Cited on pages 40 and 41.)

Clifford, S. (2007). Pandora’s long strange trip. Inc. Magazine, 7(10). (Cited
on page 48.)

Cohen, W. W. and Singer, Y. (1999). Context-sensitive learning methods for
text categorization. ACM Transactions on Infinite Systems, 17(2):141–173.
(Cited on page 23.)

Costa, L. F., Rodrigues, F. A., Travieso, G., and Boas, P. R. V. (2007). Char-
acterization of complex networks: A survey of measurements. Advances In
Physics, 56:167. (Cited on pages 73 and 79.)

Cunningham, S. J., Bainbridge, D., and Falconer, A. (2006). ’More of an
Art than a Science’: Supporting the Creation of Playlists and Mixes. In
International Conference on Music Information Retrieval (ISMIR). (Cited
on pages 38, 39, 47, 52 and 93.)

de Mooij, A. (1997). Learning preferences for music playlists. Master’s thesis,
Technische Universiteit Eindhoven, Department of Mathmatics and Com-
puter Science. (Cited on pages 37 and 38.)

Downie, J. S. (2006). The Music Information Retrieval Evaluation eXchange
(MIREX). D-Lib Magazine. (Cited on pages 31 and 75.)

Downie, J. S. (2008). The music information retrieval evaluation exchange
(2005–2007): A window into music information retrieval research. Acoustical
Science and Technology, 29(4):247–255. (Cited on pages 31 and 75.)

Dreyfus, S. E. (1969). An appraisal of some shortest-path algorithms. Opera-
tions Research, 17(3):395–412. (Cited on page 58.)

Dunlop, M. and Crossan, A. (2000). Predictive text entry methods for mobile
phones. In Personal and Ubiqutous Computing, volume 4, pages 134–143.
Springe London. (Cited on page 23.)

146

Eck, D., Lamere, P., Bertin-Mahieux, T., and Green, S. (2007). Automatic
generation of social tags for music recommendation. In Neural Information
Processing Systems Conference (NIPS). (Cited on pages 65 and 125.)

Edison, T. A. (1878). Improvement in phonograph or speaking machines. US
Patent Number 200521. (Cited on page 26.)

Edison, T. A. (1891). Means for transmitting signals electronically. US Patent
Number 465971. (Cited on page 26.)

Elias, P., Feinstein, A., and Shannon, C. (Dec 1956). A note on the maxi-
mum flow through a network. IEEE Transactions on Information Theory,
2(4):117–119. (Cited on page 73.)

Ellingham, M., editor (2007). The Rough Guide book of Playlists. Rough Guides
Ltd., 2nd edition. (Cited on pages 24 and 101.)

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine. (Cited
on page 101.)

Fields, B., Jacobson, K., Casey, M., and Sandler, M. (2008a). Do you sound like
your friends? exploring artist similarity via artist social network relationships
and audio signal processing. In International Computer Music Conference
(ICMC). (Cited on page 84.)

Fields, B., Jacobson, K., Rhodes, C., and Casey, M. (2008b). Social playlists
and bottleneck measurements : Exploiting musician social graphs using
content-based dissimilarity and pairwise maximum flow values. In Inter-
national Conference on Music Information Retrieval (ISMIR). (Cited on
pages 84, 123 and 158.)

Fields, B. and Lamere, P. (2010). Finding a path through the juke box – the
playlist tutorial. Tutorial presentation at the Conference of the International
Society of Music Information Retrieval (ISMIR). (Cited on page 65.)

Flexer, A., Schnitzer, D., Gasser, M., and Widmer, G. (2008). Playlist gen-
eration using start and end songs. In International Conference on Music
Information Retrieval (ISMIR). (Cited on pages 11, 60, 61, 65, 95, 100, 102,
123 and 158.)

Freire, A. M. (2008). Remediating radio: Audio streaming, music recommenda-
tion and the discourse of radioness. The Radio Journal: International Studies
in Broadcast and Audio Media, 5(23):97–112. (Cited on page 27.)

147

Gleiser, P. and Danon, L. (2003). Community structure in jazz. Advances in
Complex Systems, 6(4):565–573. (Cited on page 74.)

Goldberg, A. V. and Tarjan, R. E. (1988). A new approach to the maximum-
flow problem. Journal of the ACM, 35(4):921–940. (Cited on page 73.)

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative
filtering to weave an information tapestry. Communications of the ACM,
35(12):61–70. (Cited on page 49.)

Graham, R. and Hell, P. (1985). On the history of the minimum spanning
tree problem. IEEE Annals of the History of Computing, 7:43–57. (Cited on
page 58.)

Grauman, K. and Darrell, T. (2004). Fast contour matching using approximate
earth mover’s distance. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. (Cited on page 128.)

Griffin, G., Kim, Y., and Turnbull, D. (2010). Beat-Sync-Mash-Coder: A Web
Application for Real-Time Creation of Beat-Synchronous Music Mashups. In
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). (Cited on page 159.)

Grosche, P., Mueller, M., and Kurth, F. (2010). Cyclic Tempogram – A Mid-
Level Tempo Representation for Music Signals. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, TX,
USA. (Cited on page 158.)

Gruzd, A. A., Downie, J. S., Jones, M. C., and Lee, J. H. (2007). Evalutron
6000: collecting music relevance judgments. In ACM/IEEE Joint Conference
on Digital Libraries (JCDL), JCDL ’07, pages 507–507, New York, NY, USA.
ACM. (Cited on page 34.)

Hargreaves, D. J. and North, A. C. (1999). The functions of music in everyday
life: Redefining the social in music psychology. Psychology of Music, 27(1):71–
83. (Cited on page 29.)

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100 –107. (Cited on page 139.)

Harwood, E. D. (2004). Staying afloat in the internet stream: How to keep web
radio from drowning in digital copyright royalties. Federal Communications
Law Journal. (Cited on page 50.)

148

Hayes, C. and Cunningham, P. (2000). Smart radio: Building music radio
on the fly. In Expert Systems, pages 2–6. ACM Press. (Cited on pages 54
and 122.)

Hayes, C. and Cunningham, P. (2004). Context boosting collaborative rec-
ommendations. Knowledge-Based Systems, 17(2-4):131–138. AI 2003, the
Twenty-third SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence. (Cited on pages 23 and 56.)

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Eval-
uating collaborative filtering recommender systems. ACM Transactions on
Infinite Systems, 22(1):5–53. (Cited on page 36.)

Herrera, P., Resa, Z., and Sordo, M. (2010). Rocking around the clock eight
days a week: an exploration of temporal patterns of music listening. In Work-
shop on Music Recommendation and Discovery (WOMRAD), Co-located with
ACM Recommender Systems (RecSys), Barcelona, Spain. (Cited on pages 42,
52 and 141.)

Hockman, J. A., Bello, J. P., Davies, M. E. P., and Plumbley, M. D. (2008). Au-
tomated rhythmic transformation of musical audio. In International Confer-
ence on Digital Audio Effects (DAFx), Espoo, Finland. (Cited on page 160.)

Hoffman, M. D., Blei, D. M., and Cook, P. R. (2009). Easy as CBA: a simple
probabilistic model for tagging music. In Conference of the International
Society of Music Information Retrieval (ISMIR). (Cited on page 125.)

Hornby, N. (1995). High Fidelity. Indigo. (Cited on page 27.)

Howarth, P. and Rüger, S. (2005). Fractional distance measures for content-
based image retrieval. In Advances in Information Retrieval, volume 3408
of Lecture Notes in Computer Science, pages 447–456. Springer. (Cited on
page 128.)

Ince, R. A., Petersen, R. S., Swan, D. C., and Panzeri, S. (2009). Python
for Information Theoretic Analysis of Neural Data. Front Neuroinformatics,
3:4–4. (Cited on pages 75 and 86.)

ISO/IEC 11172-3 (1993). Information technology – Coding of moving pictures
and associated audio for digital storage media at up to about 1,5 Mbit/s –
Part 3: Audio. ISO, Geneva, Switzerland. (Cited on page 27.)

149

ISO/IEC 13818-3 (1998). Information technology – Generic coding of moving
pictures and associated audio information – Part 3: Audio. ISO, Geneva,
Switzerland. (Cited on page 27.)

Jacobson, K., Fields, B., and Sandler, M. (2008). Using audio analysis and
network structure to identify communities in on-line social networks of artists.
In International Conference on Music Information Retrieval (ISMIR). (Cited
on page 79.)

Jacobson, K. and Sandler, M. (2008). Musically meaningful or just noise, an
analysis of on-line artist networks. In International Symposium on Computer
Music Modeling and Retrieval (CMMR), pages 306–314. (Cited on pages 78
and 79.)

Jeffs, R. (1999). Evolution of the DJ Mixer Crossfader. Technical report, Rane
Corporation. (Cited on page 162.)

Jehan, T. (2004a). Event-synchronous music analysis/synthesis. In Interna-
tional Conference on Digital Audio Effects (DAFx), Naples, Italy. (Cited on
page 159.)

Jehan, T. (2004b). Perceptual segment clustering for music description and
time-axis redundancy cancellation. In International Conference on Music
Information Retrieval (ISMIR). (Cited on page 159.)

Jehan, T. (2005). Creating Music by Listening. PhD thesis, MIT. (Cited on
page 159.)

Jiang, D.-N. J., Lu, L., Zhang, H.-J., Tao, J.-H., and Cai, L.-H. (2002). Mu-
sic type classification by spectral contrast feature. In IEEE International
Conference on Multimedia and Expo (ICME). (Cited on page 32.)

Jolliffe, I. (2005). Principal component analysis. In Encyclopedia of Statistics
in Behavioral Science. John Wiley & Sons. (Cited on page 59.)

Knees, P., Pohle, T., Schedl, M., and Widmer, G. (2006). Combining audio-
based similarity with web-based data to accelerate automatic music playlist
generation. In ACM International Workshop on Multimedia Information
Retrieval, pages 147 – 154. (Cited on pages 58, 65, 73, 100, 102, 110, 123
and 158.)

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,
78(9):1464–1480. (Cited on page 58.)

150

Kremp, P.-A. (2010). Innovation and selection: Symphony orchestras and the
construction of the musical canon in the united states (1879–1959). Social
Forces, 88(3):1051–1082. (Cited on page 26.)

Krumhansl, C. L. (1995). Music psychology and music theory: Problems and
prospects. Music Theory Spectrum, 17(1):53–80. (Cited on page 29.)

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Annals
of Mathmatical Statistics, 22(1):79–86. (Cited on page 30.)

Kwak, H., Han, S., Ahn, Y.-Y., Moon, S., and Jeong, H. (2006). Impact of
snowball sampling ratios on network characteristics estimation: A case study
of cyworld. Technical Report CS/TR-2006-262, KAIST. (Cited on page 77.)

Lambiotte, R. and Ausloos, M. (2006). On the genre-fication of music: a per-
colation approach (long version). The European Physical Journal B, 50:183.
(Cited on pages 74 and 90.)

Lamere, P. (2008). Social tagging and music information retrieval. Journal of
New Music Research, 37(2). (Cited on page 125.)

Lamere, P. and Eck, D. (2007). Using 3d visualizations to explore and discover
music. In International Conference on Music Information Retrieval (ISMIR).
(Cited on pages 49, 93 and 95.)

Langville, A., Meyer, C., and Fernández, P. (2008). Google’s pagerank and be-
yond: The science of search engine rankings. The Mathematical Intelligencer,
30:68–69. 10.1007/BF02985759. (Cited on page 109.)

Lanza, J. (2004). Elevator Music: A Surreal History of Muzak, Easy-listening,
and Other Moodsong. University of Michigan Press, 2nd edition. (Cited on
page 25.)

Laplante, A. (2010). The Role People Play in Adolescents’ Music Information
Acquisition. In Workshop on Music Recommendation and Discovery (WOM-
RAD2010), Co-located with ACM Recommender Systems (RecSys). (Cited
on page 69.)

Law, E. and Ahn, L. (2009). Input-agreement: A new mechanism for collect-
ing data using human computation games. In International Conference on
Human Factors in Computing Systems (CHI). (Cited on page 33.)

Lee, S. H., Kim, P.-J., and Jeong, H. (2006). Statistical properties of sampled
networks. Physical Review E, 73:102–109. (Cited on page 77.)

151

Leong, T. W., Vetere, F., and Howard, S. (2005). The serendipity shuffle. In The
Australia Conference on Computer-Human Interaction (OZCHI), pages 1–
4, Narrabundah, Australia, Australia. Computer-Human Interaction Special
Interest Group (CHISIG) of Australia. (Cited on page 41.)

Leong, T. W., Vetere, F., and Howard, S. (2006). Randomness as a resource
for design. In The Conference on Designing Interactive systems (DIS), pages
132–139, New York, NY, USA. ACM. (Cited on pages 41 and 42.)

Levinthal, D. A. (1998). The slow pace of rapid technological change: Grad-
ualism and punctuation in technological change. Industrial and Corporate
Change, 7(2):217–247. (Cited on page 26.)

Levy, M. and Sandler, M. (2008). Learning latent semantic models for music
from social tags. Journal of New Music Research, 37(2):137 – 150. (Cited on
page 126.)

Lillie, A. (2008). Musicbox: Mapping and visualizing music collections. Master’s
thesis, Massachusetts Institute of Technology, MA, USA. (Cited on page 49.)

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE
Transactions on Information Theory, 37(1):145 –151. (Cited on page 30.)

Liu, K. and Reimer, Roger, A. (2008). Social playlist: enabling touch points
and enriching ongoing relationships through collaborative mobile music lis-
tening. In The International Conference on Human Computer Interaction
with Mobile Devices and Services (MobileHCI), pages 403–406, New York,
NY, USA. ACM. (Cited on pages 54 and 122.)

Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. In
International Symposium on Music Information Retrieval (ISMIR). (Cited
on pages 29 and 74.)

Logan, B. (2002). Content-based playlist generation: Exploratory experiments.
In International Conference on Music Information Retrieval (ISMIR). (Cited
on pages 55, 58, 65, 100 and 102.)

Logan, B. and Salomon, A. (2001). A music similarity function based on signal
analysis. IEEE International Conference on Multimedia and Expo (ICME),
pages 745–748. (Cited on pages 29 and 74.)

Lynskey, D. (2008). Book of Playlists; The Best of the Guardian’s ’Readers
Recommended’. Aurum Press in association with Guardian Books. (Cited on
pages 24 and 101.)

152

Maillet, F., Eck, D., Desjardins, G., and Lamere, P. (2009). Steerable Playlist
Generation by Learning Song Similarity from Radio Station Playlists. In Con-
ference of the International Society of Music Information Retrieval (ISMIR).
(Cited on pages 123 and 158.)

Marconi, G. (1897). Improvements in transmitting electrical impulses and sig-
nals, and in apparatus therefor. British Patent Number 12039. (Cited on
page 26.)

McFee, B. and Lanckriet, G. (2009). Heterogeneous Embedding for Subjec-
tive Artist Similarity. In Conference of the International Society of Music
Information Retrieval (ISMIR). (Cited on page 158.)

Mitchell Parry, R. and Essa, I. (2004). Feature Weighting for Segmentation. In
International Conference on Music Information Retrieval (ISMIR). (Cited
on page 159.)

Nagamochi, H. and Ibaraki, T. (1992). Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM Journal of Discrete Mathematics,
5(1):54–66. (Cited on page 73.)

Newman, M. E. J. (2003). The structure and function of complex networks.
SIAM Review, 45:167. (Cited on pages 72, 73 and 78.)

O’Hara, K., Lipson, M., Jansen, M., Unger, A., Jeffries, H., and Macer, P.
(2004). Jukola: Democratic Music Choice in a Public Space. In The Confer-
ence on Designing Interactive systems (DIS), pages 145–154, New York, NY,
USA. ACM. (Cited on pages 55 and 122.)

Oliver, N. and Kreger-Stickles, L. (2006). PAPA: Physiology and Purpose-
Aware Automatic Playlist Generation. In International Conference on Music
Information Retrieval (ISMIR). (Cited on page 158.)

Ono, N., Miyamoto, K., Kameoka, H., and Sagayama, S. (2008). A real-time
equalizer of harmonic and percussive components in music signals. In Inter-
national Conference on Music Information Retrieval (ISMIR), Philadelphia,
PA, USA. (Cited on page 32.)

O’Shaughnessy, D. (1987). Speech Communication: Human and Machine, chap-
ter 4. Addison-Wesley. (Cited on page 29.)

Pampalk, E. (2006). Computational Models of Music Similarity and their Ap-
plication in Music Information Retrival. PhD thesis, Technischen Universität
Wien. (Cited on pages 29, 30, 55, 74 and 75.)

153

Pampalk, E., Pohle, T., and Widmer, G. (2005). Dynamic playlist generation
based on skipping behavior. In International Conference on Music Informa-
tion Retrieval (ISMIR). (Cited on pages 60 and 124.)

Park, J., Celma, Ò., Koppenberger, M., Cano, P., and Buldu, J. M. (2007). The
social network of contemporary popular musicians. International Journal of
Bifurcation and Chaos, 17:2281–2288. (Cited on page 74.)

Pauws, S. and Eggen, B. (2002). Pats: Realization and user evaluation of an
automatic playlist generator. In International Conference on Music Infor-
mation Retrieval (ISMIR). (Cited on pages 62 and 124.)

Perez Gonzolez, E. and Reiss, J. (2007). Automatic Mixing: Live Downmixing
Stereo Panner. In International Conference on Digital Audio Effects (DAFx),
Bordeaux, France. (Cited on page 159.)

Platt, J. C., Burges, C. J., Swenson, S., Weare, C., and Zheng, A. (2002). Learn-
ing a gaussian process prior for automatically generating music playlists.
In Advances in Neural Information Processing Systems (NIPS), volume 14,
pages 1425–1432. (Cited on pages 11, 56, 57, 100, 123 and 124.)

Pohle, T. and Schnitzer, D. (2007). Striving for an improved audio similarity
measure. In The Annual Music Information Retrieval eXchange (MIREX).
(Cited on page 33.)

Pohle, T. and Schnitzer, D. (2009). Submission to Mirex 2009 Audio Simi-
larity Task. The Annual Music Information Retrieval Evaluation eXchange
(MIREX). (Cited on pages 32 and 33.)

Pohle, T., Schnitzer, D., Schedl, M., Knees, P., and Widmer, G. (2009). On
Rhythm and General Music Similarity. In Conference of the International
Society of Music Information Retrieval (ISMIR). (Cited on pages 32, 33
and 158.)

Pohle, T., Schnitzer, D., and Seyerlehner, K. (2010). Submission to Mirex AMS
Task 2010. The Annual Music Information Retrieval Evaluation eXchange
(MIREX). (Cited on pages 32 and 33.)

Pons, P. and Latapy, M. (2005). Computing communities in large networks
using random walks (long version). arXiv:physics/0512106v1. (Cited on
pages 74, 79 and 81.)

Ragno, R., Burges, C., and Herley, C. (2005). Inferring similarity between
music objects with application to playlist generation. In ACM International

154

Workshop on Multimedia Information Retrieval international workshop on
Multimedia Information Retrieval. (Cited on pages 55, 123 and 158.)

Raimond, Y., Abdallah, S., Sandler, M., and Gaisson, F. (2007). The Mu-
sic Ontology. In International Conference on Music Information Retrieval
(ISMIR). (Cited on pages 45 and 94.)

Resnick, P. and Varian, H. R. (1997). Recommender systems. Communications
of the ACM, 40(3):56–58. (Cited on page 36.)

Rhodes, C., Crawford, T., Casey, M., and d’Inverno, M. (2011). Investigating
music collections at different scales with audiodb. Journal of New Music
Research, to appear. (Cited on page 127.)

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance
as a metric for image retrieval. International Journal of Computer Vision,
40(2):99–121. (Cited on page 30.)

Salton, G. (1989). Automatic text processing: the transformation, analysis, and
retrieval of information by computer. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA. (Cited on page 140.)

Seyerlehner, K., Schedl, M., Pohle, T., and Knees, P. (2010a). Using block-
level features for genre classification, tag classification and music similarity
estimation. The Annual Music Information Retrieval Evaluation eXchange
(MIREX). (Cited on pages 33 and 35.)

Seyerlehner, K., Schedl, M., and Widmer, G. (2010b). Fusing block-level fea-
tures for music similarity estimation. In International Conference on Digital
Audio Effects (DAFx). (Cited on page 33.)

Silby, B. (2007). Is the DJ an Artist? Is a mixset a piece of art? Technical
report, Def-Logic Productions. (Cited on page 40.)

Sordo, M., Cyril, L., and Celma, Ò. (2007). Annotating music collections: How
content-based similarity helps to propagate labels. In International Confer-
ence on Music Information Retrieval (ISMIR), Vienna, Austria. (Cited on
page 120.)

Steuer, R., Kurths, J., Daub, C., Weise, J., and Selbig, J. (2002). The mu-
tual information: Detecting and evaluating dependencies between variables.
Bioinformatics, 18 Suppl.2:S231–S240. (Cited on page 75.)

155

Stocky, T., Faaborg, A., and Lieberman, H. (2004). A commonsense approach
to predictive text entry. In The SIGCHI Conference on Human Factors in
Computing Systems (CHI), pages 1163–1166, New York, NY, USA. ACM.
(Cited on page 23.)

Taivalsaari, A., Mikkonen, T., Ingalls, D., and Palacz, K. (2008). Web browser
as an application platform: the lively kernel experience. Technical report,
Mountain View, CA, USA. (Cited on page 101.)

Terrell, M. J. and Reiss, J. D. (2009). Automatic Monitor Mixing for Live
Musical Performance. Journal of the Audio Engineering Society, 57(11):927
– 936. (Cited on page 159.)

Terveen, L., McMackin, J., Amento, B., and Hill, W. (2002). Specifying prefer-
ences based on user history. In The SIGCHI Conference on Human Factors
in Computing Systems (CHI), pages 315–322, New York, NY, USA. ACM.
(Cited on page 38.)

Turnbull, D., Barrington, L., Torres, D., and Lanckriet, G. (2008). Semantic
annotation and retrieval of music and sound effects. IEEE Transactions on
Audio, Speech, and Language Processing, 16(2):467–476. (Cited on page 33.)

Tversky, A. (1977). Features of Similarity. Psychological Review, 84:327–352.
(Cited on page 28.)

Tzanetakis, G. (2007). Marsyas: a case study in implementing Music Informa-
tion Retrieval Systems. Information Science Reference. (Cited on pages 74
and 75.)

Tzanetakis, G. (2010). Marsyas Submissions to Mirex 2010. The Annual Music
Information Retrieval Evaluation eXchange (MIREX). (Cited on pages 34
and 35.)

Tzanetakis, G. and Cook, P. (2002). Musical genre classification of audio sig-
nals. IEEE Transactions on Speech and Audio Processing, 10(5). (Cited on
page 34.)

Van Gulik, R. and Vignoli, F. (2005). Visual playlist generation on the artist
map. In International Conference on Music Information Retrieval (ISMIR).
(Cited on page 48.)

Voida, A., Grinter, R. E., Ducheneaut, N., Edwards, W. K., and Newman,
M. W. (2005). Listening in: practices surrounding itunes music sharing. In

156

The SIGCHI Conference on Human Factors in Computing Systems (CHI),
pages 191–200, New York, NY, USA. ACM. (Cited on pages 38 and 47.)

Wall, T. (2007). Finding an alternative: Music programming in US college
radio. The Radio Journal: International Studies in Broadcast and Audio
Media, 5(1):35–54. (Cited on page 26.)

Ward, M. K., Goodman, J. K., and Irwin, J. R. (2006). I Want It Even Though
I Do Not Like It: Preference for Familiar but Less Liked Music. Advances in
Consumer Research, 33:266. (Cited on page 38.)

Watts, D. J. (1999). Small Worlds: The Dynamics of Networks Between Order
and Randomness. Princeton University Press, Princeton, NJ. (Cited on
page 72.)

Weber, R., Schek, H. J., and Blott, S. (1998). A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces.
In International Conference on Very Large Databases (VLDB). (Cited on
page 126.)

Weber, W. (2001). From miscellany to homogeneity in concert programming.
Poetics, 29(2):125–134. (Cited on page 25.)

Wells, A. and Hakanen, E. A. (1997). Mass Media and Society, chapter 8.
Greenwood Publishing Group. (Cited on page 52.)

West, K., Cox, S., and Lamere, P. (2006). Incorporating machine-learning into
music similarity estimation. In The ACM Workshop on Audio and Music
Computing Multimedia, pages 89–96, Santa Barbara, California, USA. (Cited
on page 33.)

157

Appendix A

Song Transitions in

Computer-Generated Program

Direction

“Flow. Machines that describe other machines, texts that absorb
other texts, bodies that absorb other bodies.”
– Paul Miller, rhythm science, 2004

A.1 Introduction

Recent advances in music information retrieval have lead to a more nuanced
understanding of pairwise song relationships, both using content [Casey et al.,
2008b; Grosche et al., 2010; Pohle et al., 2009] and various types of metadata
[Fields et al., 2008b; Maillet et al., 2009; McFee and Lanckriet, 2009]. Based in
part on these advances, a great deal of progress has been made in the area of
automatic playlist generation or more generally, automatic program direction
[Bosteels et al., 2009; Flexer et al., 2008; Knees et al., 2006; Maillet et al., 2009;
Oliver and Kreger-Stickles, 2006; Ragno et al., 2005]. These automatically-
assembled lists of songs can provide novel means of music discovery and explo-
ration.

However, in many styles of music if a list of songs is simply played sequen-
tially an important element is missing from the presentation. Much of modern
dance and pop music playback is accompanied by the cultural expectation of
a transition from one song to the next that obfuscates the end of the current
song with the beginning of next. This is commonly referred to as smooth or
continuous mixing. In many forms of human facilitated playlist presentation
(e.g. a club or radio DJ) this is the expectation both from the expert group (i.e.
other DJs) and the listeners/audience [Brewster and Broughton, 2006]. It is the
second group that is most important to scope of this paper. It is important to
acknowledge and meet the expectations of presentation style for a given playlist

of music. If this is the case, in those styles where it is appropriate, we need
to augment the playback method of a playlist to make it stylistically appropri-
ate. In this paper we will present such a playback mechanism via algorithmic
smooth mixing between tracks.

We will continue in Section A.2 by examining a brief review of automatic
mixing and crossfading along with relevant techniques in musical event segmen-
tation. In Section A.3 we rigorously define several types of song to song tran-
sitions in playback. This Section continues to present a method for automatic
phrase-aligned transitions between songs for playback. Finally, in Section A.4
we describe an initial implementation to qualitatively validate the described
method and explore various ways to improve this technique.

A.2 Existing Methods

In this section we will briefly review relevant tools for improving song tran-
sitions. We begin with an overview of musical event segmentation, followed
by discussion of how to cluster those events into larger musically meaningful
groups or clusters. We will complete the section discussing other automatic
mixing techniques.

A.2.1 Musical Event Segmentation and Clustering

Musical event segmentation uses various signal-processing techniques to detect
onsets of musical events (e.g. notes) [Bello et al., 2005; Bello, 2003]. Once
found, these onsets can be used to determine and define base level musically-
meaningful segments (e.g. tatums or beats) [Jehan, 2004a, 2005].

Musical event clustering takes segments as found via the method described
in Section A.2.1 and organizes the musical events into larger groups or clusters.
(e.g. phrases) [Jehan, 2004b; Mitchell Parry and Essa, 2004].

A.2.2 Automatic Mixing

A fair amount of research has looked into the automation of the mixing process,
though the primary focus in much of this work has been directed at means to
automate mixing of multiple single-instrument channels into front-of-house or
monitor mixes. A number of approaches exist here, but generally these tend to
approach the problem as one of constrained control rules [Perez Gonzolez and
Reiss, 2007; Terrell and Reiss, 2009].

While these approaches are interesting, they can only be used for song-to-
song transitions once some kind of temporal alignment has been achieved. In
Griffin et al. [2010] this task of beat and phase alignment has been shown in the
generation of beat-synchronous music mashups, whereby songs which humans
have deemed to be suitable together are automatically distorted in time to

159

0 20 40 60 80 100 120
time

−100

−80

−60

−40

−20

0

d
B
 G

ai
n

Simple Linear Fade

0 20 40 60 80 100 120
time

−100

−80

−60

−40

−20

0

d
B
 G

ai
n

Phrase-Aligned Start No Tempo Adjust

0 20 40 60 80 100 120
time

−100

−80

−60

−40

−20

0

d
B
 G

ai
n

Phrase-Aligned Midpoint, Short Overlap

0 20 40 60 80 100 120
time

−100

−80

−60

−40

−20

0

d
B
 G

ai
n

Phrase-Aligned Midpoint, Extended Overlap

Figure A.1: Four base crossfader curves, labeled by transition type

play simultaneously in an aligned fashion. However the goal here is constant
simultaneous playback. This work lacks a viable model for transitioning from
one song to another.

There has also been work directed at more novel song-to-song transforms.
In particular Hockman et al. [2008], which presents a means to transform one
arbitrary rhythmic-pattern into another via structural rhythmic-analysis based
on automatic onset and beat detection.

A.3 A Better Automated Crossfader

In this section we enumerate and define various types of song-to-song transi-
tions. The crossfader curves for these transitions are seen in Figure A.1. We
also detail an algorithmic means to execute one particular kind of transition,
alluded to in Section A.1, the smooth mix.

A.3.1 Transition Types

For the purpose of this discussion we will be dealing with various types of
song transitions in order of temporal complexity, from the simplest to the most
complex. Each of these transitions moves from song a to song b.

A.3.1.1 Arbitrary-Length, Fixed-Time Crossfade

The most common form of automatic song-to-song transition, commonly known
simply as an automatic crossfade. As seen in Equation A.1, the gain of either
track is simply linearly increased or reduced for an arbitrary fixed time interval.

La(t) =
(

1− t

T

)
(−G)Sa (A.1)

160

where La(t) is the adjusted playback gain of song a (which has an unadjusted
playback gain of Sa) at time t in a fixed time crossfade of an arbitrary length
T . Here t is the equivalent to time remaining in song a. −G is a negative
gain scaling factor equal to a magnitude power pychoacoustically equivalent
to a gain factor of −∞. Symmetrically, Equation A.2 will give the adjusted
playback gain of the incoming song b.

Lb(t) =
t

T
(−G)Sb (A.2)

Where Lb(t) is the adjusted playback gain of song b and Sb is the unadjusted
gain at time t in the crossfade period of length T , which for song b is equivalent
to time t from the beginning of the song.

A.3.1.2 Phrase-Aligned Start No Tempo Adjust

The aim of this transition is to emulate the effect of a tempo transition in a
single piece with multiple tempos. This effect is achieved by using Equations
A.1 and A.2 with two adjustments. The first is that rather than have an
arbitrary length of crossfade, T is set such that the first beat of the bar of song
b falls exactly one beat period after the last beat of the last bar of song a. This
is seen in Equation A.3.

T = tdBb + (tSa − tLBa) (A.3)

Where tSa is the length of song a, tLBa is the time offset from the start of
song a where the last complete bar finishes and tdBb is the time offset from the
beginning of song b where the first complete bar of song b starts.

The second change is seen in type of fade in and fade out used to bring the
songs out and in. In Equations A.1 and A.2 simple linear curves are employed.
This will result in a decrease in the overall loudness during the transition period
when both tracks have been reduced in loudness by a factor of two, resulting
in a −3dB decrease in the overall loudness of the mixed output. This can be
avoided by introducing a overlapping log factor into the loudness curve for both
tracks, for example Equation A.4.

La(t) = Sa

(
log10

(
10(T − t)

T

)
− 1
)

(A.4)

This curve can also be reflected and used for song a, as can be seen in
Equation A.5.

Lb(t) = Sb

(
log10

(
10t
T

)
− 1
)

(A.5)

161

Figure A.2: A visualisation of running bar alignment, with the upper song
setting the bar duration. Note that even when the song has ended the lower
song will still be tempo adjusted to the estimated bar duration of the initial
song.

For stylistic reasons, variations on the log curve may also be employed to
modify the speed with which song a fades in or song b fades out [Jeffs, 1999].

A.3.1.3 Phrase-Aligned Midpoint, Running Bar Alignment

Adding to the last transition, the next method moves the phrase alignment
point deeper into the first song by a small arbitrary number of phrases (typi-
cally one to three) with the goal of drawing out the transition period in order
to further obfuscate the specific point of transition. Further, some arbitrary
number of bars proceeding this phrase alignment are added to the beginning of
the overlap period. This is to allow for the gradual increase in volume in song
b to bring it to full (0dB) at the common phrase boundary point. In order for
this extended overlap to avoid disrupting the established rhythmic structure of
the first song, the second song’s tempo must be adjusted to be identical with
the first. Beyond a general tempo alignment, during the period of overlap each
bar from the second song should be stretched as necessary to have the exact
length of the corresponding bar from the first song. This bar alignment can
be seen in Figure A.2. The bar is selected as the base in order to minimize
alignment problems that may come from beats being inconstantly segmented
across rhythmic structures.

One side effect of this technique is an increase in the crossfade algorithm’s
dependency on the accuracy identifying the underlying musical events present
in the total overlap time. This is shown in Equation A.6 as the summation of
durations of all bars contained during the overlap period.

T =
tLBa∑

t=P−B
Dt (A.6)

Where P is the aligned phrase transition in songs a and b, B is the arbitrarily-
chosen number of lead in bars and Dt is the duration of the bar at time t.

The crossover curves used in this transition type are also altered slightly to
best exploit the extended period of overlap. Equations A.4 and A.5 may still be
used, however T is no longer to equal the entire overlap period. In Equation A.5
it should equal the duration of B, the duration of the lead in bars. In Equation

162

A.4 it is not necessary to rigorously define its value in this transition, though
nominally it should be no greater than tLBa−P

2 . In both cases the remaining
portion of the overlap lap period has a gain adjustment of 0dB, leaving the
loudness of the song unchanged from the original in that portion of the overlap
period.

A.3.2 Maximized Relevant Overlap

The idea behind the maximized relevant overlap is to find a particular solution
to the phrase-aligned midpoint, running bar alignment transition type outlined
in Section A.3.1.3 that selects a number of bars in the period leading up to
the phrase-aligned midpoint such that this overlap period begins on a phrase
transition in both songs as well as having a phrase-aligned midpoint. The
simplest way to do this is to search the latter half of song a and the front half
of song b for phrases of the same length in bars. If one is found then that phrase
becomes the leading half of the transition period between the two tracks. If
no such pair of phrases is found between the two tracks there are two ways
to proceed. A search can be performed for multiple sequential phrases that
total the same length in bars from each track. While this can be effective, it
is computational quite expensive. Alternatively, or if multiple phrases of the
same length cannot be found, an arbitrary number of bars can be used as the
lead in to a phrase-aligned mid point.

A.4 Discussion

We have presented a comprehensive overview of common song-transition types
with a focus on automatic song to song transitions, particularly maximized
relevant overlapping of songs to obfuscate the exact transition point. A brief
review of relevant methods in automatic musical-event segmentation and clus-
tering provides a practical base for implementing these ideas. This is considered
in the context of an ever-improving field of automatic playlist generation and
program direction, advancing the need for improved playback and presentation
mechanisms.

A.4.1 Simple Implementation

The song transitions outlined in Section A.3 are not dependent on any particular
musical event segmentation and clustering algorithm, though it should be noted
that the more reliable the assertion of beat, bar and phrase, the closer a given
method will approach the ideal. A prototype automatic mixing system which
uses the echonest public api1 to perform segmentation and clustering has been
used to examine the effectiveness of the three kinds of transitions as defined in

1http://developer.echonest.com

163

http://developer.echonest.com

Section A.3 and in particular the Maximum Relevant Overlap solution for the
Phrase-Aligned Start, Phrase-Aligned Finish transition type outlined in Section
A.3.22.

A.4.2 Further Work

From here some future work is apparent. Empirical testing of the proposed
mixing algorithms would highlight possible ways to improve them. One poten-
tial testing mechanism would be to present song transitions created using the
methods outlined in this paper to human listeners, alongside stylistically simi-
lar human generated song alignments and transitions. The human and machine
generated mixes would be given to listeners in turn. The listeners would try to
identify the song boundaries for each mix. If the methods detailed in this paper
obfuscate song boundaries as well as human mixing, the error rates for manual
boundary labeling in both cases would be similar. This could be considered as
something of a Turing test for music mixing.

This appendix deals exclusively with time alignment and amplitude adjust-
ment between two songs. However, most DJs make heavy use of equalization
during the overlap of two songs. This equalization has many uses and automat-
ing it has the potential of improving the performance of an automatic mixing
system considerably. The methods we propose in this work could be applied to
specific frequency bands separately, based perhaps on content analysis, to give
the effect of individual elements of the song entering or leaving the mix.

2source available: http://benfields.net/projects/betterfader.html

164

http://benfields.net/projects/betterfader.html

	Abstract
	Introduction
	Definitions
	Aims
	Focus
	Thesis Outline

	Playlists and Program Direction
	The Playlist as Recommender
	Categorising Playlists by Producer and Consumer

	A History of Playlist Generation
	Before Recorded Music
	Early Radio
	Post-War Radio
	The Emergence of the Club DJ
	The Playlist Goes Personal
	Now With Internet

	Music Similarity
	MIREX: Audio Music Similarity and Retrieval
	Descriptions of Participating Algorithms
	Evaluation and 2010 Results

	Recommender Systems in Music
	Finding a Good Playlist
	Coherence and Order
	The Serendipitous Lack of Order
	Summary

	Formats and Legal Considerations
	Deployed Tools and Services
	Construct Non-Social
	Consume Non-Social
	Consume Social
	Construct Social
	Summary

	Research Systems for Playlist Generation
	Human-Facilitating Systems
	Fully-Automatic Systems
	Evaluation

	Discussion

	Multimodal Social Network Analysis
	Introduction
	Networks and Audio
	Existing Tools for Networks
	Content-Based Music Analysis
	Measuring Independence Between Distributions

	Data Set Acquisition and Analysis
	Sampling Myspace
	Network Analysis of the Myspace Artist Network Sample
	Community Structure
	Summary

	Hybrid Methods of Distance Analysis
	Geodesic Paths
	Maximum Flow
	Using Audio in Community Detection
	Summary

	Discussion
	Engineering Playlist-Based Applications
	The Max Flow Playlist
	Steerable Optimized Self-Organizing Radio

	Steerable Optimizing Self-Organized Radio
	Generating Better Playlists
	More Specific Queries
	Novelty Curves and Expectation

	The Web as a Platform
	Interactivity Model
	Input via Periodic Request
	Narrowing Choice
	Eliciting Feedback

	The System
	Overview
	User Interface
	Core System

	Playlist Analysis and Evaluation
	Genre Labels
	Familiarity

	Discussion

	A Method to Describe and Compare Playlists
	Introduction
	Playlist as Delivery Mechanism
	Usage in the Wild
	Evaluation Methods
	Summary

	Topic-Modelled Tag-Clouds
	Tags as Representation
	Reducing the Dimensionality

	Playlists as a Sequence of Topic Weights
	Measuring Distance

	Evaluation
	Dataset
	Daily Patterns
	Inter-station vs. Intra-station
	Summary

	Discussion

	Conclusions
	Summary
	Contributions
	Limitations and Future Work
	Concluding Remarks

	Bibliography
	Song Transitions in Computer-Generated Program Direction
	Introduction
	Existing Methods
	Musical Event Segmentation and Clustering
	Automatic Mixing

	A Better Automated Crossfader
	Transition Types
	Maximized Relevant Overlap

	Discussion
	Simple Implementation
	Further Work

